N-heterocyclic compounds via Radical Cyclization Reactions: Chemistry of The Imidoyl Radical

Tyler Wilson
SED Group Meeting
04/12/05

Radical Cyclizations: Introduction

• Radical chain reactions:

- Two conditions for successful radical chain reaction
 - 1. The seletivities of the radicals in chain must differ from one another.
 - 2. Reactions between radical/non-radicals must be faster than radical/radical reactions

Radical Cyclizations: FMO Analysis

- Both SOMO-HOMO and SOMO-LUMO interactions are stabilizing
- The nature of the radical is determined by the strongest interaction between the respective Frontier molecular orbitals

Radical Cyclizations: FMO Analysis

- Radicals with a high-energy SOMO exhibit nucleophilic character
- Radicals with a low-energy SOMO exhibit electrophilic character

• Limited number of ways to construct heterocycles using radical cyclizations.

Case 1: Heteroatom linker in the radical chain

Parsons, A.F.; et.al. Tetrahedron, 2003, 44, 479

- Open dot represents a radical acceptor
- Closed dot represents radical donor

<u>Case 2:</u> Heteroatom as the radical acceptor

Viswanathan, R.; et.al. *J.Am.Chem.Soc.* **2003**, 125, 163

Case 3: Heteroatom as the radical donor

$$\begin{array}{c} H \\ R^2 \\ R^1 \end{array} \longrightarrow \begin{array}{c} R^2 \\ R^2 \\ R^2 \\ R^2 \end{array} \longrightarrow \begin{array}{c} H \\ R^2 \\ R^2 \\ R^3 \end{array} \longrightarrow \begin{array}{c} H \\ R^3 \longrightarrow$$

• Method also highlights a tandem radical cyclization

• Common theme to all three cases is the vicinial relationship between the radical acceptor and radical donor

• What about geminial radical acceptor/radical donor groupings?

Case 4: Geminal radical acceptor/radical donor synthon

TBDPS

EtSH, AIBN

$$R^1$$
 R^1
 R^1
 R^1
 R^2
 R^2
 R^2
 R^1
 R^2
 R^2
 R^2
 R^2

$$= N - COOR^{1}$$

$$EtSH, AIBN \\ PhMe, Reflux$$

$$EtS - R^{1} = t-Bu, 72 % \\ R^{2} = Et, 70%$$

Bachi, M.D.; et.al. *J.Org.Chem.* 1994, 59, 7752

- Isonitrile and carbon monoxide variants have both been studied
- Focus of this talk will be on the isonitrile variants

Radical Cyclizations: Imidoyl Radical

• Reaction pathways available to imidoyl radicals

Fujiwara S., et.al. J.Org.Chem. 2001, 66, 2183

Radical Cyclization: Pyrrolines and Pyroglutamates

• The pyrroline ring can be broken into two radical synthons

• Bachi and co-workers used this general scheme for the synthesis of several pyrroline and pyroglutamates derivatives

Radical Cyclization: Pyrrolines

$$R_{2}$$
 R_{1}
 R_{2}
 R_{1}
 R_{2}
 R_{3}
 R_{2}
 R_{3}
 R_{2}
 R_{3}
 R_{5}
 R_{5}

• Thioisocynate formation results when R⁵ is a stable radical

Radical Cyclization: Pyrrolines

				1	yrro	lines	11 + 12								
temp,	time,					_		yield,	11/12	_1	sothi	ocya		13	yield,
°C (h		\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	\mathbb{R}^4	\mathbb{R}^5	%	ratio ^b		R ¹	\mathbb{R}^2	\mathbb{R}^3	R ⁴	%
110	1.0	k	H	Н	H	¹Bu	Ph	74	1:1.1	_					_
110	1.5	1	H	H	H	^t Bu	Et	83	1.4:1	_					_
40	1.5	m	H	H	H	Et	Et	85	1.2:1	_					-
40	1.5	n	H	Me	Me	Et	Et	83	1.4:1	-					-
85	2.0	0	H	Me	Me	Et	$(CH_2)_3$ -	84	1:1	_					_
							CO ₂ Me								
40	1.5	р	Me	H	\mathbf{H}	^t Bu	Ph	traces	_						_
110	1.5	p						30	_						_
40	3.5	q	Me	H	H	^t Bu	Et	56	_	d	Me	H	H	^t Bu	_
110	2.5	ď						50	_	d					10
45	3.0	r	H	Me	Me	Et	CH ₂ CO ₂ Me	38	1:1	c	H	Me	Me	Et	57
5¢	2.0	r						58	1:1	C					36
-20°	4.5	r						70	1:1	c					28
−60 °	8.5	r						78	1:1	c					2

Bachi, M.D., et.al. J.Org.Chem. 1994, 59, 7752

Radical Cyclization: Pyroglutamates

• The authors found that pyroglutamates could be obtained in high yield with the use of mercaptoethanol.

• The authors proposed that the pyroglutamates were forming through the following intermediates.

Radical Cyclization: Catalytic Method

- Placement of a cleavable phenylthiyl radical in the substrate allowed for a "catalytic" process to occur.
- Product 24 was obtained after isomerization to give a conjugated pyrroline in 85% yield.

Radical Cyclization: Quinoline Derivatives

• Quinoline structure is present in a a variety of natural products including the anti-tumor candidate (S)-camptothecin

- Researchers have found that substituents at the 7 and 9 position on the quinoline ring favorable modulate the activity of the drug.
- Methods for making the 7,9-substitution pattern are limited.

Radical Cyclization: Quinoline Derivative

• The breaking apart camptothecin core reveals possibility for a radical cyclization reaction

• Curran and co-workers envisioned a radical cyclization between phenyl isonitrile and a N-propargyl-6-iodo-pyridone derivative

Radical Cyclization: Quinoline Derivatives

- In the 7,9 isomer the orientation of R^A has changed from ortho to meta.
- Increasing the size of the oaryl substituents gives rise to the more crowded 7,9isomer.

Radical Cyclization: Quinoline Derivative

• Proposed Mechanism: 7,12-isomer

$$\begin{array}{|c|c|}
\hline
 & R^2 \\
\hline
 & N \\
 & N \\$$

Radical Cyclization: Quinoline Derivatives

• Proposed Mechanism 7,9-isomer

$$R^1$$
 R^2

Radical Cyclization: Quinoline Derivatives

- 7,9-Isomer favored when R¹ is large
- Authors contend this could result from unfavorable steric interaction during 6-endo cyclization

Radical Cyclization: 2,3-Substituted Indoles

• Indole and indoline rings can be found throughout a wide range of alkaloid natural products

• Few practical methods are available for the construction of 2,3-substituted indoles

• Fisher indole synthesis is not compatible with acid labile functionalities.

Radical Cyclization: 2,3-Substituted Indoles

General Method:

- Allows for both 3-substituted and 2,3-substituted indole rings
- 2-stannylindoles are further reacted through Still conditions to give 2,3-substituted indoles.

Radical Cyclization: 3-substituted indoles

• E/Z double bonds tolerated in most cases.

• Formation of tetrahydroquinoline (6) could be avoided by use of Z-double bond

entry	substrate	product	isolated yield,%
1	CO ₂ Me 1a	CO ₂ Me N H 4a	91
2	OTHP NC 1b	OTHP H 4b	83
3	OBn 1c (E/Z6:1)	OBn N 4c	68
5	nBu NC 1e	n-Bu N 40	51
		N 6	33
6	n-Bu NC 1f	4.	72
		6	18

Radical Cyclization: 2,3-substituted indoles

- Decreasing the radical stabilizing ability of the R-group resulted in decreased yields
- Substrate scope of coupling partner in Stille reaction was high.

Radical Cyclization: (-) Aspidophytine

• Fukuyama showcased his radical cyclization methodology in the synthesis of (-)-Aspidophytine

Radical Cyclizations: (-)-Aspidophytine

Radical Cyclizations: (-)-Aspidophytine

• Synthesis of indole core

• 7 manipulations, 37% overall yield

Radical Cyclization: Concluding Remarks

• The radical cyclization chemistry of the imidoyl radical has been used for the synthesis of a variety of N-heterocyclic compounds in moderate to high yields

Radical Cyclization: Concluding Remarks

• Applications in total synthesis have led to the successful construction of (-)-aspidophytine as well as derivatives of the camptothecin and mappicine families.

Radical Cyclizations: References

Introduction:

- 1. Fleming, I. Frontier Orbitals and Organic Chemical Reactions, John Wiley & Sons: West Sussex, England, 1971
- 2. Giese, B. Radicals in Organic Synthesis: Formation of Carbon-Carbon Bonds, Pergamon Press, Oxford, 1986

Formation of Heterocycles:

- 1. Irvine, D., et.al. Tett. Lett. 2003, 479
- 2. Johnston, J.N., et.al. J. Am. Chem. Soc. 2003, 125163
- 3. Tokuda, M, et.al. Tetrahedron, 2003, 59, 827

Pyrrolines:

1. Bachi, M.D., et. al. J. Org. Chem. 1994, 59, 7752

Quinolines:

- 1. Curran, D.P. et.al. J. Am. Chem. Soc. 1991, 113, 2127
- 2. Curran, D.P. et.al. Tett. Lett. 2003, 1299

Indoles:

- 1. Fukuyama, T. et.al. J. Am. Chem. Soc. 1994, 116, 3127
- 2. Fukuyama, T. et.al. Tett. Lett. 2001, 1403

(-)-Aspidophytine:

- 1. Fukuyama, T. et.al. Tetrahedron, 2003, 59, 8571
- 2. Corey, E.J. et.al. J. Am. Chem. Soc. 1999, 121, 6771

Reviews:

1. Majumdar, K.C. et. al. Tetrahedron, 2004, 60, 6239

2 0 - 0 - 0 - 0 - 8 - 0 - 8 - 0 .

•

.

.