

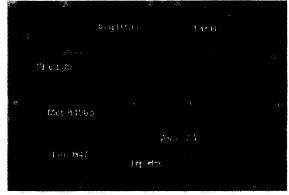
Biosynthetic Diels-Alder Reactions: Do Diels-Alderases Exist?

Steve Tymonko 9/30/03

Allen.

Why Diels-Alder?

Several hundred biosyntheses have been proposed to include Diels-Alder reactions


Despite hundreds of known enzymatic reactions, no enzyme catalyzed cycloadditions are known

Enzymes catalysis usually due to stabilization of transition state
Diels-Alder products closely resemble their transition states
-Product inhibition of the enzyme is expected to dominate

Challenges for Diels-Alderase identification

- Product inhibition must be minimal
- Identification of enzyme-catalysis must be distinguished from thermal cyclization
 - Unexpected stereochemistry of cyclized products
 - Kinetic data

- Basics for generating catalytic antibodies- 1) Hapten covalently bound to protein known to give immune response
 - 2) Immune response intiated, spleen cells fused with myeloma cells
 - 3) cells incubated and screened for activity

Crystal structure shows hapten bound in tight hydrophobic pocket

H-bond from Asn H35 to maleimide carbonyl stabilizes TS

Kinetics studies conducted with 3

 $k_{\text{cat}} = 13.0 \text{ min}^{-1}$ $k_{uncat} = 0.013 \text{ M}^{-1} \text{ min}^{-1}$ $k_{\text{cat}} / k_{uncat} = 1000 \text{ M}$ effective molarity

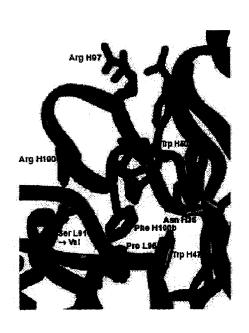
Catalyzed Uncatalyzed

 $\Delta H^{\ddagger} = 11.3 \text{ kcal/mol}$ $\Delta H^{\ddagger} = 15.5 \text{ kcal/mol}$

 $\Delta S^{\ddagger} = -22.1 \text{ cal K}^{-1} \text{ mol}^{-1}$ $\Delta S^{\ddagger} = -21.5 \text{ cal K}^{-1} \text{ mol}^{-1}$

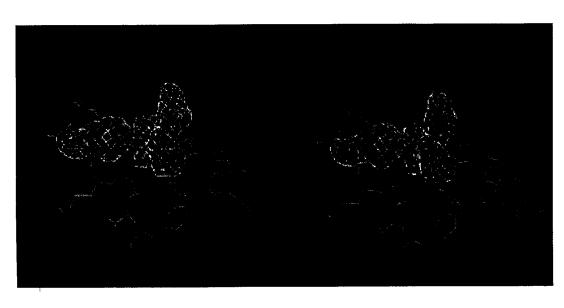
Antibody acts by lowering enthalpy of activation

boat

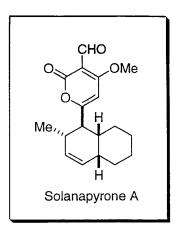

Proposed chair-like TS would prevent product inhibition

Used hapten 6 to generate antibodies

Antibody A11 was found to catalyze the reaction


Kinetics-
$$k_{\text{cat}}$$
= 0.67 s⁻¹
 k_{cat} /K_m= 900 M⁻¹s⁻¹
 k_{uncat} = 1.9 M⁻¹s⁻¹
 k_{cat} / k_{uncat} = 2.83 M

Much less efficient catalyst


Crystal structure displays 2 key H-bonds Carbamate carbonyl to Trp^{H50} Succinimide to Asn^{H35} $\pi\text{-stacking from maleimide to }\text{Trp}^{\text{H50}}$

Propose that H-bonding makes dienophile more reactive and tight binding serves as entropy trap

Solanapyrone: Initial Evidence

- Solanapyrone A isolated from Alternaria solani
- Principle toxin of potato blight

Solanapyrone: Labeling Studies

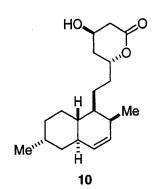
Feeding of **1**, **2**, and **3** resulted in labeled Solanapyrone A, no label was detected from **4** or **5** ²H NMR of major product from **1** showed C¹⁷:C¹⁸ deuterium ratio of 1:4.3 5:1 mixture of Solanapyrone B and E showed 1:1 ratio in ²H NMR

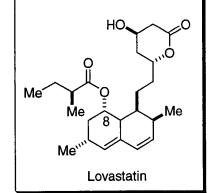
Labeling Studies

- Combined derivative 6 with diastereomer 7, separated and took ²H NMR
- Deuterium observed in 6 but not in 7
- Concluded reaction must be enzymatic to give enantiopure Solanapyrone

Solanapyrone: Final Evidence

Calculate 87:13 selectivity of crude enzyme based on background reaction


No Solanapyrone B was formed from 9 under Ar atmosphere.


Lovastatin

- Also known as Mevinolin, marketed as Mevacor®
- Lowers cholesterol by blocking mevalonate synthesis
- Feeding studies demonstrate polyketide connectivity
 - Oxygen at C8 from O₂, all others from acetate
- Initial Proposed Biosynthesis

Lovastatin: Revised Proposal

10 was isolated and demonstrated to be an intermediate in Lovastatin synthesis

 Proposed enzymatic Diels-Alder during polyketide synthesis

Conducted model study for cyclization of A

Synthesis of Hexaketide Analogs

Small quantity of 15a spontaneously cyclized (10 day half-life at rt.)

Model Study

Compound	Conditions	Yield	Products
15a	160 ⁰ C, 4d	81%	1:1 14c:14 d
15b	160 ⁰ C, 4d	72 %	1:1 14c:14d
15c	160 ⁰ C, 4d	83 %	1:1 14c:14d
15a	0.9 eq. EtAlCl ₂ , rt. 3h	80 %	19:1 14c:14d
15b	0.9 eq. EtAlCl ₂ , rt. 3h	58 %	9:1 14c:14d

14a was not observed under any conditions

Lovastatin

Biological Studies

- .. Me''''
- Labeled 15 was not incorporated into the natural product in feeding studies
 - 15 could not be isolated from the fermentation mixture

- **15a** X= S(CH₂)₂NHAc **15b** X= OEt
- 15c X= OH

Isolated and purified LNKS (Lovastatin nonaketide synthase)
 LNKS with protein lovC produces Dihydromonacolin L 10

Determine Diels-Alder must take place with covalently bound analog of **15a** LNKS is the first example of a purified Diels-Alderase

Vederas, J. et. Al. *JOC*, **1996**, 2613 Vederas, J. et. Al. *JACS*, **2000**, 11519

Macrophomic Acid

OMe O
$$C_3$$
-unit C_3

Feeding experiments with [¹³C]-acetate demonstrate all but C¹, C⁶, and C¹¹ derived from acetate Pyranone 1 isolated from fermentation mixture is converted to Macrophomic Acid in whole cells [¹³C]-glycerol feeding results in incorporation into C¹, C⁶, and C¹¹

Purified Enzyme

OMe O Me Me Macrophomic Acid

Macrophomate Synthase (MPS) was successfully purified
40 kDa enzyme, dimer, Mg²⁺ required
Only oxalacetate and pyruvate are react with pyranones in

Only oxalacetate and pyruvate are react with pyranones in the presence of MPS

Tested 40 pyranone analogs

$$R^2$$
 R^3
 R^4

R¹ must be H, R³ must be COCH₃ or CO₂R

R² = OEt, OBn, Cl are reactive, OTBDPS, OAc give no reaction

 R^4 = Me reacts, H gives aberrant product

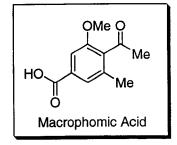
Oikawa, H. et. Al. *Tetrahedron Lett.* **1999**, *40*, 6183 Oikawa, H. et. Al. *Tetrahedron Lett.* **2000**, *41*, 1443 Oikawa, H. et. Al. *Biosci. Biotechnol. Biochem.* **2000**, *3*, 530

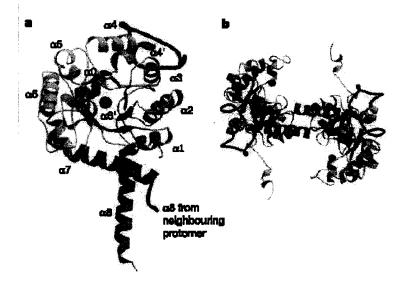
Kinetics

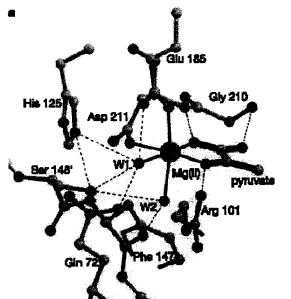
OMe O Me Me
Macrophomic Acid

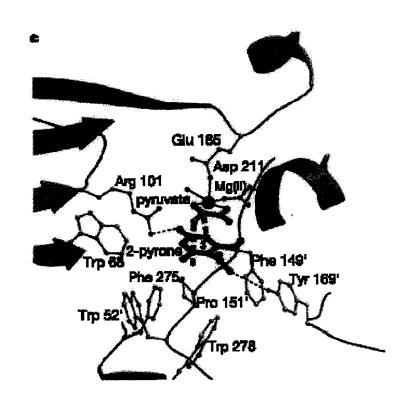
		OMe O
Reaction	<i>k</i> _{cat}	Me
1.Macrophomate formation		O CH ₃
a. Oxalacetate + 1	0.60 s ⁻¹	1
b. Pyruvate + 1	0.027 s ⁻¹	
Decarboxylation of Oxalacetate	16.3 s ⁻¹	Me
3. Adduct Formation		2
a. 2	15.4 s ⁻¹	, Ŭ.,
b. 3	5.9 s ⁻¹	O CH ₃
		2

Labeling Study

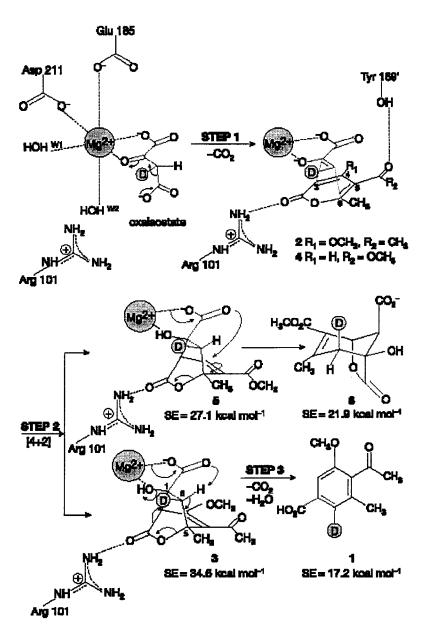

31% D in pro-R position 13% D in pro-S position

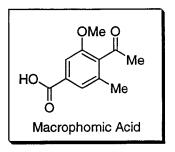

Authors conclude that 66% of label is lost, 26% derived from racemization, and 18% from the reaction of specifically labeled material (110%!)


43 % deuterium incorporation


Based on deuterium incorporation, propose anti-elimination to form macrophomic acid

MPS Crystal Structure





Mutations at Arg 101 and Tyr 169' result in loss or reactivity Model also explains aberrant products and lost reactivity in Pyranone derivatives

Final Mechanism

Conclusions

Catalytic antibodies demonstrate the viability of Diels-Alderases

Solanapyrone and Lovastatin provide circumstantial evidence for the existence of Diels-Alderases

The isolation and crystal structure of Macrophomate Synthase give solid evidence that biosynthetic Diels-Alder reactions can be enzyme catalyzed

Can a Diels-Alderase be used preparatively to prepare otherwise difficult or inaccessible substrates?