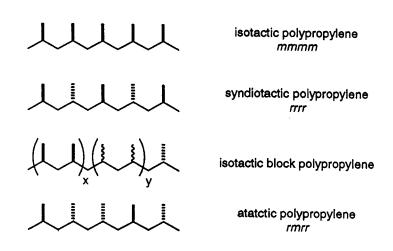
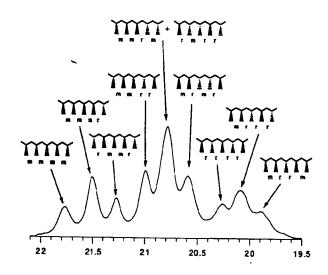
Polypropylene Synthesis: Use of Dynamic Catalysts

Single State Catalyst:

Two State Catalyst:

- In catalysis as we understand it, a catalyst has a desired state and an undesired one.
- Effort is spent trying to minimize reaction through this undesired state.
- What if we need to control both states?
- How can we design a two state catalyst capable of producing 2 stereochemical outcomes in a controlled fashion?

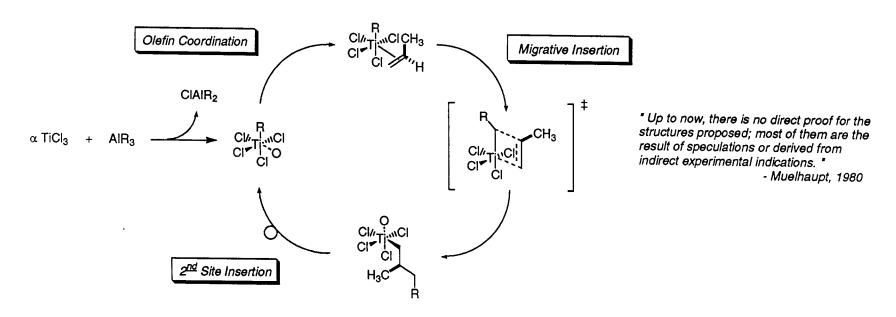

Polypropylene Stereochemistry


stereochemical dyads:

$$syn = m$$

$$anti = r$$

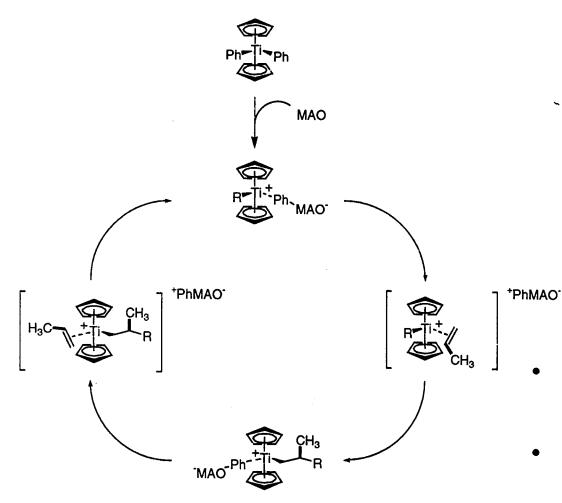
stereochemical pentads:



The chemical shift of a particular methyl group is sensitive to the relative configurations of the neighbouring methyl groups. Hence, the pentad is a commonly used measure for α olefin stereochemistry since this is the highest level of resolution available at ~ 100 MHz NMR.

- A wide range of polypropylene geometries are possible, yielding a wide range of physical properties.
- NMR is a convenient and accurate method for determination of stereochemical content.

Most microstructures can be easily accessed through careful choice of catalyst.


Ziegler Natta Catalysis

- Ziegler Natta catalysis is a widely used form of heterogeneous catalysis which can generate various isotactic polyolefins.
- Cossee proposed a two site mechanism where the polymer chain undergoes insertion into a coordinated olefin (*Tetrahedron Lett.* **1960**, *17*, 12-21).
- Stereoselectivity is induced by the nature of the neighbouring titanium atoms in the matirx.

Despite the amazing success of these systems, little rationale design is possible.

Isotactic Polypropylene Synthesis

Ewen, J.A. J. Am. Chem. Soc. 1984, 106, 6355.

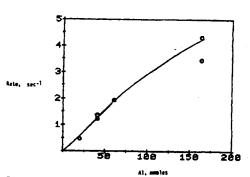
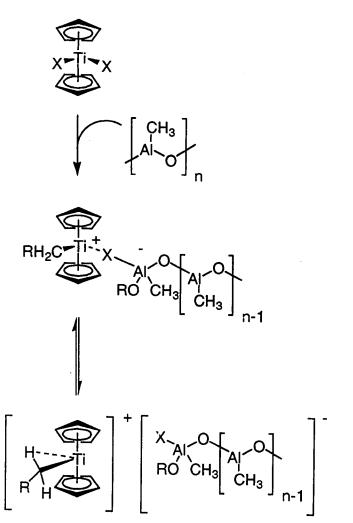


Figure 1. Integral polymerisation rate dependence on concentration of total aluminum at -60 °C. Rate: moles of propylene consumed per mole of Cp₂Ti(Fh)₂ per second (Table I).

Table I. Yields and Molecular Weights Obtianed with Cp₂Ti(Ph)₂ at Different Aluminum Concentrations⁴


Ti, mmol	Al, mmol	C ₃ H ₆ , mol	yield,	turnovers,	10-4 <i>R</i>	R./R.
0.062	20.5	4.0	4.5	0.48	7.47	1.9
0.056	41.0	4.8	11.4	1.22	14.4	1.9
0.017	41.0	4.0	3.4	1.35	17.6	1.6
0.061	61.5	4.0	17.6	1.92	16.7	1.7
0.066	164	5.4	34.5	3.43	27.1	1.7
0.065	164	4.3	39.5	4.47	30.7	1.6

^aPolymerization conditions: 400 cm³ of toluene, -60 °C, 1 h. These polymerizations were initiated by adding propylene. All others by injection of the catalyst. ^aRate in moles of propylene/mole of Ti/s.

The first homogeneous catalysts were simple titanocenes.

Activation with methyl aluminoxane provided catalysts capable of polymerizing α olefins.

Activation Processes: The Role of MAO

- Early catalytic systems employed alkyl aluminum chlorides as activators.
- Vollmer discovered that adventitous water greatly accelerated the reaction.
- Methyl aluminoxane (MAO) is a undefined hydrolysis product of trimethyl aluminum.

Table 1. Ethylene polymerization with the system bis(cyclopentadienyl)dimethyltitanium(IV), trimethylaluminum, and water.

Yield of polyethylene [g/l]	Time [h]	Temp. [°C]	Titanium concentration [mol/l]	Amount of water added [mol/l]	Rel. Mol. Wt.
33.6 43.2 57.6 34.2	112 1.5 1.5 1.5	21 21 50 12	7 × 10 ⁻⁴ 7 × 10 ⁻⁴ 3.5 × 10 ⁻⁴ 1.1 × 10 ⁻⁴	<0.25 × 10 ⁻³ 4.6 × 10 ⁻³ 4.6 × 10 ⁻³ 7.5 × 10 ⁻³	3 800 000 200 000 90 000

- Based on careful studies, it has been determined that two MAOs are required.
- The dissociation of the MAO counterion is promoted by agostic interactions with the methylene and methine protons of the growing alkyl chain.

The Role of Agostic Interactions

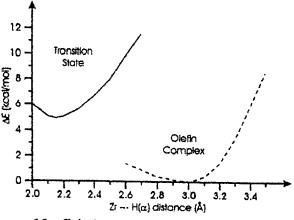
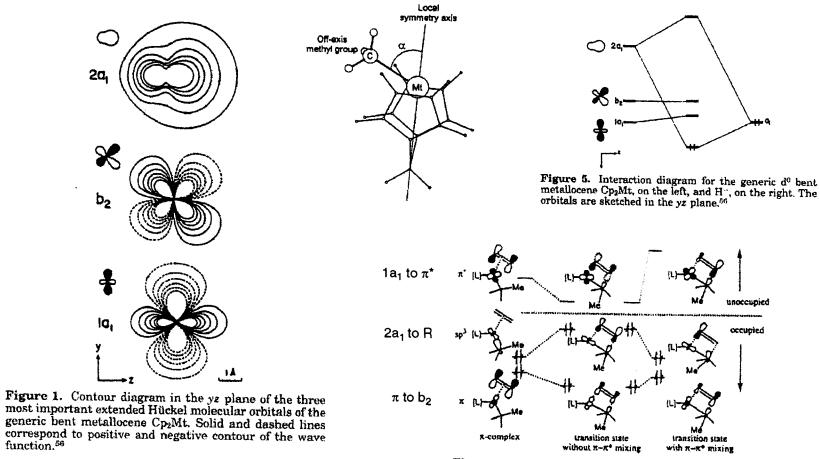



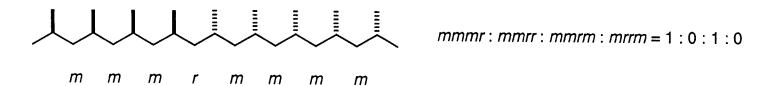
Figure 16. Relative energies of the transition state (continuous line) and of the olefin complex (dashed line) for propene insertion into the Zr-methyl bond of the H₂-Si(Cp)₂ZrCH₃⁺ system, as a function of the Zr-H(α) distance.¹⁷⁵

- Experimental evidence for these effects was gained through stereochemical analysis of the polymer formed from (E)-1-deuteriohexene.
- The selectivity was not dependent on use of a chiral catalyst:
 - rac-(EBTHI)₂ZrCl₂ / syn : anti 2.55 : 1
 - Cp₂ZrCl₂ / syn : anti 1.3 : 1

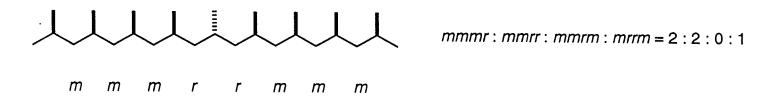
The Insertion Event: Orbital Interactions and Control

function.56

Figure 13. Molecular orbital diagram of the mixing process involved in the insertion of olefin into a metalcarbon bond. Orbital occupations are shown for the formal do configuration on the metal. 181


Stereochemistry of a C_{2v} Catalyst

atactic: r


^{*}Steroregularity independent of time and reactant concentrations. *4[mm][rr]/[mr]² = 4IS/H² = 1 for chain-end control; 2[rr]/[mr] = 2S/H 1 for site control

Chain End vs. Catalytic Site Control

Chain End Control:

Catalytic Site Control:

- Assuming a selective polymerization process, the type of stereochemical control can be determined by analysis of the types of errors observed in an isotactic sequence.
- In chain end control, monomer misinsertion will cause a change in the sense of insertion selectivity, evidenced by single *r* dyads.
- In catalytic site control, a monomer misinsertion will be corrected by the influence of the catalyst, leading to *rr* triads.

Analysis of polymer stereochemistry reveals insights about polymerization mechanism.

Syndiotactic Polypropylene Synthesis

- Design of a rigid C₁ symmetric catalyst provides for two enantiotopic binding sites.
- The double silyl bridges aid in maintaining the stereochemical integrity of the catalyst.

Bercaw, J.E. J. Am. Chem. Soc. 1996, 118, 11988.

Stereochemistry of a C1 Catalyst

entry	catalyst	(C _i H _e) (M)	activity*	[r] (%)	T _m (°C)	M,	M.	Y	<u> </u>							
1	la	0.8	3×10^{3h}	20.6			-	[mmmm]	[mmmr]	[munr]	[mmrr]	[mrnm]+[mrsf]	[mmr]	[1777]	[mrrr]	[mrrm]
•	la	1.5	1.3×10^{48}	90.6		2.9×10^{1}	1.9			1.7	3.6	11.6		68.6		1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
-	Ja			95.0	-,	ndf	CO3			<1	1.5	5.1			14,4	
- 7		2.1	2.9×10^{46}	94.7	131	6.1×10^4	3.0			<1	2.1	4.7		79.5	13.5	
4	1.a	2.8	3.1×10^{46}	95.9	130	9.0×10^{4}	4.2			- 1				83.6	9.0	
	ła	3.4	5.3×10^{48}	97.1	140	1.01×10^{5}	1.5			- 1	2.0	3.5		86.1	7.7	
ь.	1.6	0.8	1.9 × 104	80,2	nd	3.4×10^{4}	2.3			- 1	1.9	2.7		90.7	4.2	
7	1b	1.5	1.9×10^{4}	91.8	d	5.9 x 10 ⁴	2.4		1.4	3.0	6.0	19.9	5.1	41.5	20.4	2.5
8	Ib	2.1	3.5×10^{9}	92.7	đ	1.46 × 105	1.7				2.3	12.6	<1	68.2	17.0	4.5
9	lh	2.9	5.9×10^{4}	95.1	118					<1	1.4	10.3	< }	71.6	13.3	26
10	1b	3.4	1.04×10^5	97.1		1.15×10^{3}	3.0				1.3	8.6	· ·	82.6	7.4	2.6
11	lç	0.8	7×10^3		127	1.66 × 10 ⁵	1.8					5.5		89.0		
12	_			81.5	A	3.8×10^4	1.9	<1	1.2	2.4	5.3	18.8	4.2		5.5	
13	ic	1.5	2.4×10^{3}		d	4.9×10^{4}	2.2			1.7	3.6	16.7		47.2	18.0	1.7
	10	2.1	4.3×10^{4}	90.7	102	7.7×10^{4}	1.7			<1 ·	2.1		3.4	59.0	15.0	
14	lc	2.8	5.4×10^4	93.6	119	กด้	nd			- 1		13.0	1.3	68.9	13.5	
15	le	3.4	5.7×10^{6}	96.5	124	1.33×10^{5}	1.8				2.4	7.8		75.8	12.7	1.2
			silymer per gr									7		81.6	11.3	

[&]quot;Defined as grams of polymer per gram of Zr per hour. A different sample of methylahimoxane cocatalyst was employed for entries 1-5. The activity data are therefore not comparable with entries 6-15. Not determined. No melting point observed by DSC.

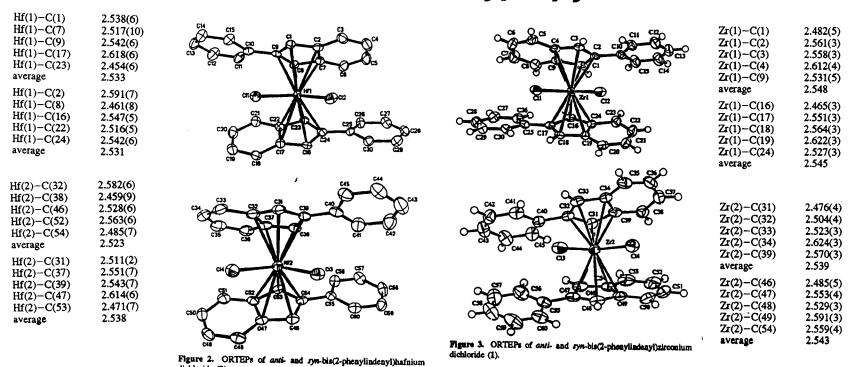
entry	catalyst	(°C)	activity	[r] (発)	(°C)	м.	M√ M,	[mmmm]	[nvnmr]	(rmmr)	[mnirr]	[mrmm] + [rmrr]	[mrnr]	[ttrr]	[mrrr]	
16 17	12 18	20 50	2.8 x 10° 7.9 x 10°	97.1 96.6	151 140	1.25 × 10 ⁶ 3.3 × 10 ⁵	1.9 2.3			0.8 <1	1.5 2.0	0.9	(Miller)	93.4 90.6	3.5	[mmm]
19 20	1b 1b	20 50	16.9×10^6 3.2×10^5 1.4×10^6	94.1 99.4 94.5	119 151 123	1.6×10^{3} 9.8×10^{3} 2.9×10^{3}	3.2 2.0	· · · · · · · · · · · · · · · · · · ·		<1	3.0	7,3 1,2	<u> </u>	79.5 97.5	4.9 10.0 1.2	
21 22	1b le	70 20	9.2 × 10 ⁵ 3.5 × 10 ⁵	90.6 97.9	152	1.3 × 10 ⁵ 7.9 × 10 ⁵	2.0 2.3			1.6 1.8	1.9 2.4	4,2 12.9	<1	81.0 68,4	11.1 14.3	
23 24	le le	50 70	8.3×10^{3} 7.3×10^{6}	96.0 91.3		2.6×10^{5} 1.4×10^{5}	2.1 2.2			0.3 <1	0.6 1.2 3	1.6 4.8 13.6	< 1	94.2 83.8	3.3 10.1	
* De	fined as g	rams of	polymer per	gram of	Zr per	hour. Mo m	elting		······································		<u>-</u>	1270		65.8	17.1	

Defined as grams of polymer per gram of Zr per hour. No melting point observed by DSC. "These two runs were carried out earlier with a differing catalyst:MAO ratio (1:325) and with propylene of generally lower purity that for the other runs.

Bercaw, J.E. J. Am. Chem. Soc. 1999, 121, 564.

- The inverse relationship of monomer concentration to errors is indicative of a second order process competing with a first order process.
- The direct relationship between errors and temperature agrees with this conclusion.

Stereochemistry of a C4 Catalyst

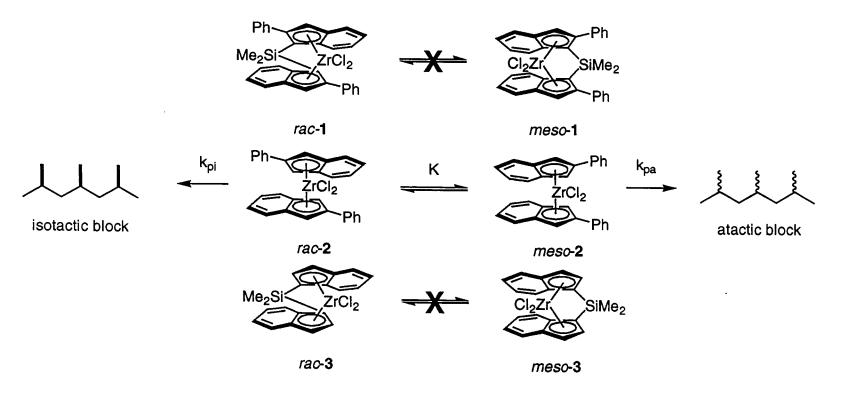

- Only site epimerization can account for the observed effects of temperature and monomer concentration.
- These catalysts are clearly under a catalyst site control mechanism.

Isotactic Polypropylene Synthesis Revisited

				·					
catalyst	T _p , °C	Al _{MAO} /Zr, molar ratio	propene (solvent)	activity, kgpp/(mmol _{2r} h)	$\tilde{M}_{\mathbf{w}}$	MJM,	T. C	\$. mmnim"	% 2,1°
rac-C ₂ H ₄ (3-Me-C _p) ₂ ZrCl ₃	40	2 000	3 bar (toluene)	5.8	19 600	2.3	133	92.2	
rac-C ₂ H ₄ (3-i-Pr-Cp) ₂ ZrCl ₂	40	2 000	3 bar (toluene)	4.5	19 400	2.2	1.46	94.6	nr
oc-C2H4(3-1-Bu-Cp)3ZrCly	40	2 000	3 bar (toluene)	1.0	17 400	2,5	141	97.6	nr
rac-Me ₂ Si(3-Me-Cp) ₂ ZrCl ₂ (C ₂ -I-2)	30	10 000	3 bar (toluene)	16.3	13 700	2.3	148	92.5	nr
ac-Me ₂ Si(3-t-Bu-Cp) ₂ ZrCl ₂	30	10 000	3 bar (toluene)	0.3	9 500	2.3	149		13.6
mc-Me ₂ Si(2,4-Me ₂ -Cp) ₂ ZrCl ₂	30	10 000	3 bar (toluene)	11.1	86 500	1.9	160	93,4	nr
ac-Me ₂ Si(2,4-Me ₂ -Cp) ₂ ZrCl ₂	70	15 000	liquid propene	97	31 000	1.9		97.1	m
ac-Me ₂ Si(2.3.5-Me ₂ -Cp) ₂ ZrCl ₂ (C ₂ -1-3)	30	10 000	3 bar (toluene)	1.6	133 900	0.0	149	89.2	H
ac -Me ₂ Si(2,3,5-Me ₃ -Cp)-ZrCl-(C_0 -[-3)	50	15 000	liquid propene	207		2.0	162	97.7	nc
ac-Me ₂ Si(2-Me-4-t-Bu-Cu)-ZrCl ₂ (C ₂₋ t-4)	50	300	nquiu propene	201	184 500	1.9	161	96.4	0.3
ac-Mc ₂ Si(2-Me-4-t-Bu-Cp) ₀ ZrCl ₀ (C ₂₋ 1-4)	70	15 000	liquid propene	30	$4\ 000\ (M_{\rm h})$	2.7	149	97	0.2
ac-Me _z C(3-t-Bu-Cu) ₂ ZrC] ₂	50	3 000	Herrid properte	10	19 000		155	94.3	Эť
ac-Me ₂ C(2-Me-4-t-Bu-Cp) ₂ ZrCl ₂ (C ₂ -1-5)	50	8 000	liquid propene	15	$17\ 000\ (M_{\odot})$		153	99,5°	(),4
rac-Me,Si(2-Me,Si-4-1-Bu-Cp),YHI, (C,-I-6)	25		liquid propene	73	103 000	1.9	162	99.5	9,16
C+1-7		none	25% v:v (MeC ₆ H ₁₁)	very low	$4.200 (M_p)$	2.3	157	97.0	
a Pour 130 bysers on	50	1 200	2 bar (toluene)	2	9 800	1.8	128	97	2.50

- From EC NMR. The values are referred to the total methyl signals. Total of regionrors (see section VII). On primary insertions only. 3,1 units, nr = not reported.
- Knowing that these metals form two site catalysts, it would seem logical that C₂ symmetric ligands would make excellent catalysts.
- A variety of highly active, rigid and sterically biased systems have been developed.
- The C₂ symmetry gives a catalyst with two enantiotopic sites.

Isotactic Block Polypropylene?



- In order to better understand the cause of this phenomenon, investigations were preformed to understand the solid- and solution state behavior of 1 and 2.
- Both 1 and 2 interconverted between their *rac* and *meso* forms quickly compared to the NMR timescale at -100 C.
- Conversion to the dibenzyl derivatives allowed for NMR dynamics to be preformed:
 - − Dibenzyl 1 : Δ H = 7.8±2.3 kcal / mol, Δ S = -15.4±10.1 cal / mol, k = 6700±300 s⁻¹ @ 20 C
 - Dibenzyl 2 : $\Delta H = 7.1\pm3.0 \text{ kcal / mol}$, $\Delta S = -17.3\pm11.0 \text{ cal / mol}$, $k = 6800\pm300 \text{ s}^{-1}$ @ 20 C

Oscillating Catalysts

- In order to explain their results, the authors proposed a model where the isomerization of the complex was competitive with the rates of polymerization.
- If isomerization were faster than polymerization (C-H control) the polymer would be atactic.
- If isomerization were slower than polymerization, the polymer would be purely isotatic or atactic.
- NMR results with the dibenzyl metallocenes seem to be in error since the neglect the steric influence of the growing polymer chain and the cationic nature of the metal center.
- Again, this mechanism agrees with the concentration dependence on the selectivity.

Modelling the Dynamic Catalyst

Waymouth, R.M. J. Am. Chem. Soc. 1998, 120, 11316.

- In an attempt to model the behavior of the two rotameric forms of **2**, the *rac* and *meso* isomers of **1** and **3** were synthesized.
- By comparing the activities and selectivities of the different complexes, it is hoped that the solution state behavior of 2 can be approximated.

Stereochemistry of the ansa-Linked Catalysts

Table 1. Summary of Polymerization Results Using 1-rac, 1-meso, and 3

catalyst	% гас	yield (g)	prodvity*	Ammmm ⁵	%m³	$M_{\rm w}^{\rm r} (\times 10^{-3})$	M_{ν}/M_{\circ}	IR index	T _m (°C)
1	100	4.01	2408	86	96	425	2.6	0.9	139
1	100	3.88	2327	87	96	410	3.1	0.9	139
1	100	4.29	2573	88	96	495	4.1	0.9	138
1	0	6.82	4092	7.0	50	150	2.1	0.2	1.70
1	0	6.59	3951	6.2	48	125	2.0	0.2	
1	0	6.76	4058	6.2	49	194	2.2	0.2	
i -1	100	2.20	3270			1850	2.9	V-±	n de
14	0	1.74	2610			1470	3.1		nd*
3	100	10.39	6234	92	98	121	2.2	nd	nd
3	45	1.75	1050′	91	98	nd	nd	nd	nd nd

Table 2. Summary of Polymerization Results Using Mixtures of 1-rac and 1-meso

entry	% rac	yield (g)	prodvity	%mmmm ^b	%m*	$M_{\star}^{\epsilon}(\times 10^{-3})$	M_{\bullet}/M_{\bullet}	IR index	T _m (°C)	$\Delta H_t(J/g)$
1	42	4.00	2400	34	64	293	3.1	0.41	139	21.3
2	57	5.29	3172	39	69	312	3.3	0.48	138	26.1
3	61	5.09	3052	45	73	345	3.4	0.56	138	28.7
4	75	4.47	2680	57	79	374	3.9	0.64	139	49.9
5	2PhInd (2)	4.59	2756	39	73	502	3.6	0.50	138	16.9

- The rac isomer is more selective but far less active that the meso.
- This trend appears unique to the polymerization of propylene.
- Based on %m, comparison of different mixtures of rac- and meso- 1 to 2 suggest that it exists as a ~70:30 mixture of rac: meso forms.
- After comparison to rac- and meso- 3, this behavior seems to be a unique consequence of the 2-phenyl substituent.

Theory vs. Experiment

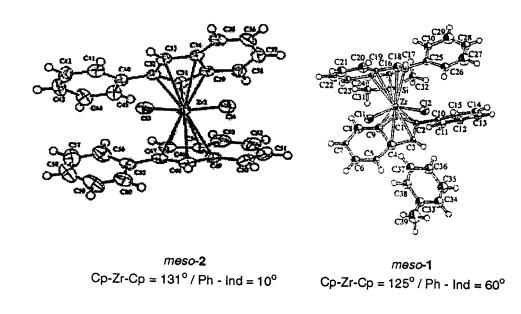
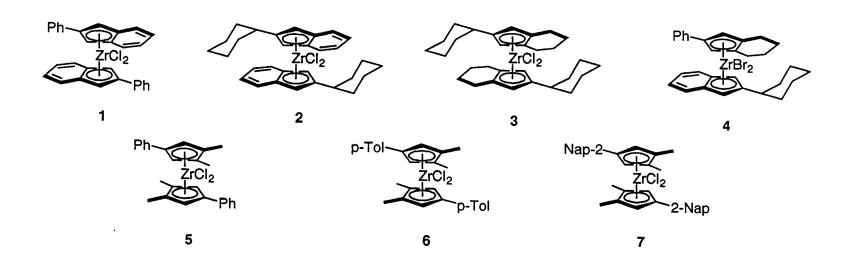


Table 3. Calculated and Experimental Productivities for 1-rac and 1-meso


entry	method"	rac productivity	meso productivity
6	%mmmm	2408 (166*)	4037 (30)
7	%m	2471 (155)	4033 (14)
8	% isotactic polymer	2652 (253)	3977 (77)
9	ΔH_{ℓ}	2545 (149)	4648 (784)
10	expti	2436°	40344

^a Variable plotted against %rac. ^b Standard error, ^c Average of entries 1, 2, and 3 in Table 1, ^d Average of entries 4, 5, and 6 in Table 1.

BL_a / BL_i = K_{eq} [k_{p-meso} / k_{p-rac}]
assuming K_{eq} = 0.7 ...
BL_a / BL_i = 1.3
$$\alpha_{meso}$$
 = 0.55 / α_{rac} = 0.98

- Minor structural differences exist between meso- 1 and 2, most notably the angle between the planes of the indenyl and phenyl rings.
- Calculations based on the different productivities of *meso-* and *rac-* 1 estimate that the atactic blocks are slightly longer than isotactic ones.
- Calculations using the predicted equilibrium constant can be applied to a two state polymerization model to closely approxiamte observed catalyst activities.

Role of Indenyl Substituents

- A systematic study of the influence of the substitution pattern on the indenyl rings may provide clues for design of a more tunable catalysts.
- Catalysts 2 through 4 were prepared to assess the importance of π stacking.
- Catalysts 5 and 6 were prepared to assess the requirement of the indenyl ring.
- Catalyst 7 was prepared to probe the benefit of steric bulk at the 2 position.

The Role of Indenyl Substituents

Table 1. Summary of Polymerization Results Using Unbridged Metallocenesa

entry	catalyst	propylene press (psig)	prodvity*	% mmmm ^c	% m	$M_{\rm w}^d$ (×10 ⁻³)	M_/M
1	1	50°	1380	31	69	310	3.2
2	••	75f	1480	35	71	399	3.8
3		bulk#	2525	32	70	542	3.5
4	2	50	374	11	57	117	3.8
5	1	75	602	11	55	131	3.9
6		bulk	2340	15	62	219	
7	3	50	940	3	46		3.3
8	-	75	2020	3		20	1.9
9		bulk	2390	5	45 50	27	1.9
10	4	50	531	~	52	40	1.9
11	-	75		6	49	52	2.6
12			957	7	51	78	2.9
13	.	bulk	3394	13	58	186	3.1
	5	50	3657	10	59	146	2.0
14		75	4511	10	58	215	2.2
15	_	bulk	8797	10	59	392	3.2
16	6	50	2325	10	59	201	3.1
17		75	3235	10	58	290	2.9
18		bulk	7120	10	60	323	3.1
19	7	50	867	10	59	94	2.1
20		75	1027	11	59	140	2.2
21		bulk	2833	īī	61	217	2.7

^{*} Conditions: T = 20 °C; $[Zr] = 5.0 \times 10^{-5} \, \text{M}$; [AlV]Zr] = 1000. b Kilograms of polypropylene per mole of Zr per hour. Conditions: T = 20 °C; $[Zr] = 5.0 \times 10^{-5} \, \text{M}$; [AlV]Zr] = 1000. b Kilograms of polypropylene per mole of Zr per hour. Determined by all Conditions: $[C_3H_6] = 3.24 \, \text{M}$. Conditions: $[C_3H_6] = 3.24 \, \text{M}$.

- Elimination of π stacking interactions has a drastic effect of the %mmmm.
- Replacement of the indenyl ring with a trisubstituted cyclopentadiene does not effect %m, but does decrease %mmmm.
- Addition of the bulky 2-napthyl substituent is also detrimental to selectivity and activity.

Peripheral Substitutions

• In order to effect the rate of ligand rotation, it was hypothesized that steric or electronic differentiation of the 2-phenyl substituents might lead to changes in %mmm rather than %m.

Waymouth, R.A. Macromolecules 2002, 35, 5382.

Steric Hinderance to Rotation

Table I. Propylene Polymerizations at Various Temperatures Using LMMAO and 2/MMAO

						The second secon			
entry	catalyst	[C ₃ H ₆] (M)	P (paig)	T _p (*C)	r _{max} (mmol/min)	[mmmm]6	Mn (g/mol)	M_n/M_n	
1	1	11d	n/a	20	nd*	0.44	100 000	3.0	
2	1	1.2	10	20	0.63	0.18	35 700	2.6	
3	1	1.2	24	40	0.67	0.09	11 200	2,4	
4	1	1.2	48	60	0.78	0.05	3 900	2.2	
5	2	1.2	10	20	nde	0.40	70 700	2.8	
8	2	1.2	24	40	0.66	0.29	31 900	4.8	
7	2	1.2	48	60	1.37	0.17	13 600	4.1	

^a Polymerization conditions: $[Zr] = 1.0 \times 10^{-6} M$; [Al]/[Zr] = 3160; $[C_0H_0] = 1.16 M$; $t_{cm} = 60$ min. ^b By ¹²C NMR. ^c By high-temperature GPC. ^d Synthesized in 90 mL of liquid propylene + 10 mL of toluene. ^c Not determined.

entry	(CaH ₆) (M)	prod	M _n (g/mol)∕	M_n^c	Telement (*C) ^{rt}	$\Delta H_{\rm f}$ $({\rm J/g})^d$	[mmmm]*	[mmmr]	[rmmr]	[mmrr]	[mmrm] +[rmrr]	(mrmr)	 	mrre)	
8	1.2	4000	70 700	2.8	45, 120	27.9	0.40	0.17	0.03	0.10	0.15	0.05	0.02	0.04	e n n
9	1.7	1890	100 000	3.2	45, 130	58.0	0.59	0.13	0.02	0.06	0.10	0.08		0.02	
10	2.2	2490	90 100	3.2	46, 140	60.5	0.65	0.11	0.02	0.05	0.08	0.03		0.02	
11	2.7	2020	154 000	3.5	51. 149	75.2	0.70	0.10	0.02	0.04	0.07	0.02		0.01	
12	3.3	2420	162 000	3.6	145	64.4	0.76	0.09	0.01	0.03	0.06	0.02	0.01	0.000	400
13	3.8	4850	119 000	3.3	45, 144	67.6	0.75	0.09	0.01	0.04	0.06		0.00	0.01	ים ס
14	117	2140	64 700	3.8	155	93.0	0.78	0.08	0.02	0.03	0.04	0.01		0.01	

[°] Polymerization conditions: $|Zr| = 2.0 \times 10^{-6}$ M; $|Al| = 3.16 \times 10^{-2}$; |Al|/|Zr| = 15.800; $T_p = 20$ °C; $t_{ran} = 60$ min. ° Productivity in kg PP/(mol Zr h). ° By high-temperature GPC. ° By DSC. ° By 15C NMR. Synthesized in 90 mL of liquid propylene + 10 mL of toluene.

- Increased temperature decreases %mmmm, in line with competition of a 1st and 2nd order process.
- Increased monomer concentration also increases %mmmm.
- The ligand 2 has far more isotactic blocks than 1.
- The error distribution of polypropylene produced by 2 suggests a catalyst site control mechanism.

Electronic Hinderance to Rotation?

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 			-					
expt	cal	method	conditions ^d	prodvty ^a	Mat	MJM.	nt (%)	manuar (%)
1	1	Bd	35 psig, 20 °C	952	232 000	3.8	63	23
2	1	B	50 psig, 20 °C	832	250 0(x)	3.3	66	27
3	1	В	75 psig, 20 °C	1480	399 000	3.8	68	29
4	I	В	100 psig, 20 °C	960	435 000	3.0	70	31
15	3	B	35 psig, 20 °C	206	454 000	4,0	85	56
16	3	B	50 psig, 20 °C	582	470 000	3,9	85	59
17	3	В	75 psig. 20 °C	624	631 000	4.3	88	ő4
19	3	В	100 psig. 20 °C	638	608 000	5,6	87	67

[&]quot;In kg of PP/(mol of Zr-h). Determined by GPC vs polypropylene. Determined by DC NMR spectroscopy. $[M] = 5.0 \times 10^{-5} M$, [Aly[Zr] = 1000, t = 1 h. Method A, [M]/MAO in 20 mL of toluene injected under 200 psig Ar, method B, [M]/MAO in 20 mL of toluene injected under P + 5 psig propylene.

- Again, increased monomer concentration leads to increases in %mmmm.
- The ligand 3 yields comparable isotatic dyad content (%m), but much greater isotactic block content (%mmmm).
- The loss in productivity seems to be contradictory with the assumption that more electron poor ligands give more strongly cation metal centers.
- However, this increased electrophilicity may also be traced to increases in rate of deactivation processes.

Assessment of Electronic Effects

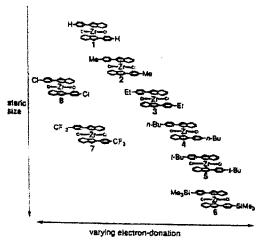
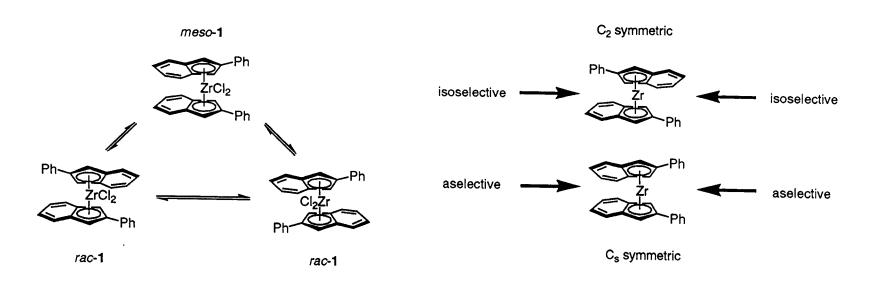


Fig. 2. Variation of substituents for $(2-4-R-C_0H_4)$ indenyl), $ZrCl_2$ catalysts.

Catalyst (2-(4-R)Phind), ZrCl	Pressure (psig)	Productivity (kgPP/mol Zr/h)	Mb (kg/mol)	M_{*}/M_{*}	[m] %	[mmmm] %
1	25	863	220	3.66	66	27
(R=H)	50	1780	303	4.34	71	33
2	25	842	163	3.29	69	32
(R=CH ₃)	50	1290	311	3.76	72	39
3	25	780	211	3.58	69	31
(R=Et)	50	1544	343	4.15	73	37
4	25	697	217	3.49	67	29
(R=nBu)	50	1289	351	4.16	71	37
5	25	578	219	3.23	67	29
(R=1Bu)	50	1174	357	3.66	71	34
6	25	786	173	2.97	68	29
(R=TMS)	50	1344	317	3.67	70	33
7	25	775	138	2.84	62	žī
(R=CF ₁)	50	1281	190	3.21	66	26
•	25	331	102	3.60	60	20
(R=C1)	50	689	149	4.00	66	27

Lij=5×10⁻⁵ M. [Al]/[Zr] = 1000; 100 ml toluene total volume, 1 h, 20°C (solution runs); 80 ml liquid propylene, 20 ml toluene, 3-40 min, 20°C (bulk runs).


- Addition of substituents of varying electronic properties at the remote 4 position does not yield an obvious trend with respect to productivity or selectivity.
- Comparison of the trend with steric parameters yields an equally unsatisfactory correlation.

Waymouth, R.A. J. Mol. Cat. A 1998, 136, 23.

Description by high-temperature GPC vs. polypropylene standards.

Person distribution determined from 13 C NMR (300 MHz, tetrachloroethane, 100°C).

Oscillating Catalysts

- It has been demonstrated that a two state, dynamic catalyst is a good choice for synthesis of stereoblock polymers.
- The differing reactivities of the isoselective and aselective states provide an interesting handle on selectivity.
- Control over the rate of catalyst isomerization vs. polymerization yields polymers with different properties.
- Can the steric differences between the two sites be utilized to induce selective copolymerization of different monomers?

Ethylene / Propylene Co-polymerization

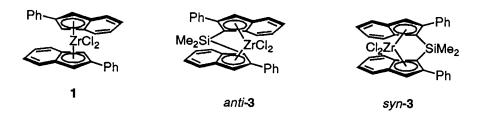


Table 4. Ethylene/Propylene Copolymerization Parameters for ansa-Metallocenes anti-3, anti-4 and syn-3, syn 40

N_{\exp^b}	metallocene	$X_{\bullet}/X_{\mathfrak{p}}$ in feed	% E in polymer ^d	avg prod ^e	rerd	ref	r√ -	M _a (×10 ⁻³)
5 2 3 3 2	$(1)^k$ $(anti-3)$ $(syn-3)$	0.065 0.132-0.137 0.062 0.136-0.137 0.062-0.062	25 34-38 21-22 39-41 22	3500 2000	1.3 ± 0.20 0.53 0.62 ± 0.10 0.79 ± 0.05 1.08 ± 0.06	5.4 ± 0.9 2.64 ± 0.15 2.99 ± 0.42 4.83 ± 0.34 6.00 ± 0.31	0.24 ± 0.04 0.20 ± 0.01 0.20 ± 0.03 0.16 ± 0.01 0.18 ± 0.01	688 66 54 44 54

^a Conditions: 100 mL of liquid propylene/20 mL of toluene, $T_p = 20$ °C, time = 20 min, $[Zr] = (1-10) \times 10^{-6}$ M, MAO = 130 mg. ^b Number of experiments used for determination of the average reactivity ratios. ^c The range of the ratios of the mole fractions of ethylene (X_e) and propylene (X_p) . ^d The range of mol % E in copolymers determined using ¹³C NMR. ^c In kg of PE/(mol of Zr h), averaged the several runs; see Supporting Information. ^c Determined using ¹³C NMR and diads equations according to Kakugo. ^c Determined by his temperature GPC. ^b Kravchenko, R.; Waymouth, R. M. Macromolecules 1998, 31, 1-6.

- The catalysts 1 and 3 can generate EP copolymers.
- The rate of ethylene incorporation is much higher for *syn-3* as compared to *anti-* 3.
- The unlinked catalyst and syn-3 have a higher tendency to form blocks of propylene than does the C2 symmetric anti-3.
- These differences suggesting a strong steric differentiation between sites in the rac and meso catalyst structures.

Waymouth, R.A. Macromolecules 2002, 35, 2882.

Metallocene Polymerization Catalysts: Trends?

Symmetry	Sites	Polymer
C _{Zv} Achiral	A, A Homotopic	Atactic
C2 Chiral	E, E Homotopic	Isolactic
C _S . Achiral	A,A Diastereotopic	Alactic
C _s Prochiral	E, -E Enantiotopio	Syndiotactic
<i>G</i> 1 Chir∎l	E, A Diastereolopic	Hemi-isotactic

" E = enantioselective site; A = nonselective site.

- As we have seen, the symmetry properties of a particular catalyst are somewhat predictive in terms of the stereochemistry of the polymer that is formed.
- This lead to the recent formation of Ewen's Symmetry Rules (see *J. Mol. Cat. A* 1998, *128*, 103).
- The formation of isotactic block polymers fits into these rules since it employs a catalyst which alternatres between C₂ chiral and C_s achiral states.
- Extension of this system to copolymerization has yielded promising results based on the steric differentiation of the two sites.

