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You Need 250 mg of Complex Molecule Xity-9er ASAP
What are Your Options?

Pro’s Con’s
= Biology Fast and Easy (1 day) Potentially non-existant
o Kill (Harvest); Requweq tools Probably limited gvallablllty
_ (Jug, knife, sep-funnel Death of something
o lIsolation Column, etc)
" Biology _ Good precedent Limited by Organism lifespan.
o Genetics Potentially fast (<1 yr) Requires more knowledge.
- Directed Evolution (then Potential to discover ~ Specialized tools.
isolation) Something new exists
. . —FExcettentprecedent— Requires lots of knowledge
Chemistry Will work Requires lots of skill
O Synthetic Organic Potential to discover Requires lots of tools
» Total Synthesis Something new is high

A useful tidbit: Bacteria make up ~50% of the earth’s biomass
animals make up _.0.1%

Despite the formalities and definitions, There are a Continuum of Possibilities and
any Combination of these may be the optimum path to success.
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Options in Chemical Pathway Design

Option I: different times
Reaction occur in a ﬁ -
vessel, but not all at

the same time 7

i

Option II: different spaces
Reactions occur in a single
vessel at the same time
but in different space

Option III: same space, same ti
Reactions occur in a single
vessel at the same time

5V W N

Reaction  Work-Up Concentrate Purify

2

Step 1 of n

Concentrate

time

Tried and true
1-3 Rx/Day
Must rest

New and different
n Rx/Day

Never stops

(but could)

Tested by Life
~500 Rx/Day
E. coli

Stop = death




Umpolung Science

Biology Math + Physics + Chemistry + Life

Chemistry Math + Physics applied to physical processes and change

Physics Math applied to mass, energy and movement

Mathematics Pure numbers: Logic Fundamental Concepts

Consonant ~ ~~~~ """ T TTTTTTTTTTO >
Mathematics Physics Chemistry Biology

Synthetic Biology
Dissonant €=========== == == ——-—-— -~



Developing the Tools
500 BC — 500 AD P

o Botany, Zoolology and dissection
o Figure out “how things work” by inspecti

~500 — 1500 century AD
o Middle Ages, scientific hietus,

1500 — 1700: Naturalists and Observation
o Classification and the microscope - Leeuwenhoek

o animalcules and wee beasties (small life, short lifespan) \D;;
o ‘“Directed Evolution” exists but is not understood (breeding pla '°°“°’°"
(A
1 700 o 1 850 First Generation mmf:e
o Describe living things Phenotypically (& @
o Organize and Quantify (Antoine-Laurent de Lavoisier) Life o ‘];,'w;;,,;,is\
« Conservation of Mass, Stoichiometry, Thermodynamics / / / o e
« Birth of Modern Chemistry L4 )” /W NG
o  Photosynthesis discovered o) ooy oy
o  Atomic Theory (1808) R H ¢ n '
o  Vitalism trashed: Friedrich Wéhler — (1828) {,,__,%_4 [ca~~o}'“-*i‘a“j~—é'—~i" ., S
H
1850’s Genetics and Evolution are born "Gt o oo

0 Phenotypes can be Rationalized statisticany (ociicuus. wiciiuc) / AY) %y)
o And the average phenotype of a population can change (Evolution:

Darwin) oo Aw ,/&

o Chemical Structure proof — Kekiile - benzene R ﬁ | gf‘




Genetics, Molecular Biology and Organic
Chemistry

= 1850-1900
o Rediscovery of mendel
o Cell theory, embryology and germ theory
o Periodic table — Mendeleyev
o The electon — JJ Thompson

= 1900 - 1950

o Molecular Biology becomes a field of study
Genes are on Chromosomes

Lewis Dot Structures

NMR is born (Purcell and Bloch)

Physical organic chemistry and reactive
intermediates

o Total synthesis if commerciallized (camphor)

o
o
O]
O

= 1950 -1975

o Intellectual core of Molecular Biology establlshed
1953 DNA structure solved
Learning AT and GC rules and sequencing
DNA to RNA to Protein dogma established
Genetics, molecular biology, cell biology

Primary and Secondary metabolic “maps” (eg.
Terpenes)

Begin to “perturb” with molecules
We can make anything: Vitamin B12

O O O O O

O
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“Current” Status of Molecular Biology
= 1975 — today:
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product C "'
reactant A —
catalyst g
. — —--»' T

Collection of DATA
Sequence Bacteria, yeast, worm, fly, human...

Molecular biology, chemical biology, tools, tools, tools...

“omics” Huge amounts of data
Retrosynthetic Analysis

Many successful drugs developed
Combinatorial and Diversity Oriented synthesis born

Many types of Catalysis

pre-catalyst

catalyst/C catalyst/A

net: A + B gives y/ reactant B
catalyst/AB

b,
<>_/
”
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N —_—
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“Synthetic Biology”

In 1974, the Polish geneticist Waclaw Szybalski introduced the term "synthetic biology”
in answer to the question "what next?".

His response; “Up to now we are working on the descriptive phase of molecular biology. But the
real challenge will start when we enter the synthetic biology phase of research in our field. We will
then devise new control elements and add these new modules to the existing genomes or build up
wholly new genomes. This would be a field with the unlimited expansion potential and hardly any
limitations to building "new better control circuits” and ..... finally other "synthetic"organisms, like a
"new better mouse". ... | am not concerned that we will run out exciting and novel ideas, ... in the

synthetic biology, in general.
James Clark Maxwell Gregor Mendel

In other words: “Like synthetic
chemists, synthetic biologists
are target-oriented.”

-Laura Kiessling

Today’s Talk: Using the concept of “Synthetic Biolc
as a tool for Synthetic Organic Chemistry.




An Engineer’s Impression of Life

Systems

Devices

Parts:

Storable Information

Potentially many devices

A few parts linked together

Proteins, mRNA, small molecules, etc

DNA

incorporates "Life"
self-maintaing synthetic
pathway(s)

Synthetic pathway

Catalyst

Genes and Gene Clusters



The Major Divisions

Mutational Biosynthesis

o Change (mutate or rearrange) existing Pathways

o Success found in Primary metabolic pathways

o Success found in polyketides, terpenes @Nd nonribosomal peptide synthetases (secondary)
Synthetic Biology

o Engineering using the machinery of a cell.

o Combine “parts” to make devices: Sensors, signals, logic gates,
computers, synthetic pathways...

Genetic Engineering
o Modify, Design, build, and standardize the genetic parts (genes)

NOTE: An integral (and vital) field of study is developing suitable host species and strains. While interesting, this
topic is outside the scope of the talk.




Common Methods Employed

1. Biosynthesis of natural products 4. Combinatorial biosynthesis

IV. Combinatorial biosynthesis

wild-type organism #1

2. Precursor-directed biosynthesis

Il. Precursor-directed biosynthesis (PDB)

homologous or heterologous (host organism)
wild-type organism \ "gene shuffling"

hybrid-type organism
Feeding of unnatural precursor B* LA

3. Mutational Biosynthesis

Ill. Mutational biosynthesis / mutagynthesis (MBS) lf we pl ace the emphaSiS on
et ergamem “Pathway Design”, then Any Combination
of these + flow + batch processes

TMutasynthonB is supplemented COUld be Opt|ma|

to a mutant organism blocked in
the synthesis of the natural
precursor B.



Shikimic Acid & Tamiflu (A Brief Reminder)
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Shikimic Acid

= Propose a Synthesis: COH

HO™ t ~OH

OH

Some Starting Materials (optional)

O O Ho. 0 OH H
HO-P- p’
; O OH /PMO
HO HO (:)H

PEP E4P



ake My Starting Material E. coli: Shikimic Acid

Aromatic AA’s
CHO 'r
H——OH 'f
H— oK veolve @ 0 HO S)Oi/l COOH
glycolysis HO-P-0 + P
HO——H —_— HO OH HO =30
H——OH OH HO. #~
CH,0H PEP \]/ E4P "0 "oH
glucose | HO -
_ o _ OH
HO, COOH Ho \dCOOH o
O Ko} | T
Q o < o)
HO™ ™ . OH -0 ~"“OH
DAHP = -
\L [ ] - | L
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] ) i / OH
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> "'3’ CO.H
~ "OH HO™ > “OH HO. 2
a OH _ OH /
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Frost, J. W. et al. J. Am. Chem. Soc. 1999, 121, 1603 Acid



Optimized Biosynthesis: Shikimic Acid

OH H
Ho-g~o ? N HO\P'S)\/& transketolase Pentose
HO \‘(U\OH HO . = - Phosphate
OH Inserted extra copy Pathway
PEP E4P
DAHP synthase ¢
Inserted a copy insensitive to HO 4COOH Operational Optimization oH
Ef:r‘:‘b:fokr;”’xz'fs"’“ 0 1.Increased glucose concentration T o
' 2 0 2.Addition of glucose mimic: >
HO’P\OH é)H OH 3 Collection of acids by ion exchange oH “"bwme
DAHP 4 Removal of quinic acid by Recrystallization
Inserted extra copy | DHQ synthase \L
Shikimate
HO, CO,H HQ‘ COOH COOH CO.H Kinase
SR e _NeR el
HO™ E OH 0 : OH O : OH HO™ : OH Knocked Out \L
OH OH OH OH
DHQ DHS COOH
Shikimate HO. @
: _ Dehydrogenase Ho © T TOH
Final result: ~40 g/L in ~35 h Extra copy to minimize OH
Feedback inhibition S3P




Artemisinin: An example

of a o
Secondary Metabolite
v, & H oz
Me Me 0 0 t 4 Me
X N"0-p-0-P-0~ Me™ XX
o 0

Isolated from Artemisia annua (~270 mg/250 g)
Strong anti-malarial activity (too expensive)

Polyoxygenated: lactone and endoperoxide
1 of ~55,000 known terpenes: polymer of” ¥

A sesquiterpene (3 isoprene urwiep
Oxidized after cyclization

Me
FPP derived)



vievaionate e
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Mev. Dep. Pathway Optimized for Artemisinin Synthesis

Me O o Me - M
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“higher order terpenes”
Especially sterols
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Amorpha-4,11-
diene



Proposed Mechanism
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Optimized End Game for Artimisinin

N % 15
Inserted P450 and CPR
— > >
) Me P450and CPR T H Me o h Me
_— \ i s
e

,;r;w:;pha-4,1 1- |dentified a cytochrome P450 monooxygenase gene

and its redox partner (cytochrome P450 oxidoreductase — CPR)
by sequence analogy. Cloned it and inserted into yeast genome.

T
/O>‘/ Me Unknown
o0/ ¢ Biochemistry P450 and CPR

H 0 < : Me €

H . - H
Me7 M€ Organic /\H/OH
Synthesis O
~115 mg/L
(similar to A. annua)
Reduced to ~12potential Production time decreased from

genes......but no data yet ~3 months to 4 days



Artemisinin from Artimisinic Acid
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Conclusions and Future Directions

= Conclusion: It works
= Where does the field sit?
= \What is there to do?

= My Opinion: The ideal situation, for the synthetic organic chemist,
would be a simple, borderless interphase between our science,
synthetic biology and metabolomics.

« Give synthetic chemists a new “vantage point.”

- Provide “synthetic biologists” with a never-ending list
of targets.

Organic Chemistry “Omics” Synthetic Biology

(masters of molecule (massive piles of unsifted (master of “pathway
making) biological data) making”)




Future Directions

Starting Material
Intermediates
Entire Drugs
Libraries
Integrated flow
pathways?

In essense “never-stopping” synthetic
machines.....powered by Life.
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