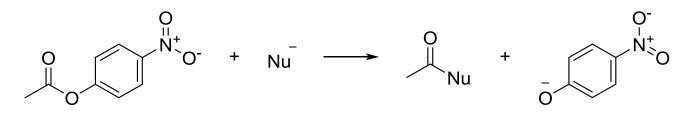
The alpha effect Andrew Zahrt Denmark Group Meeting 4.28.15


Overview

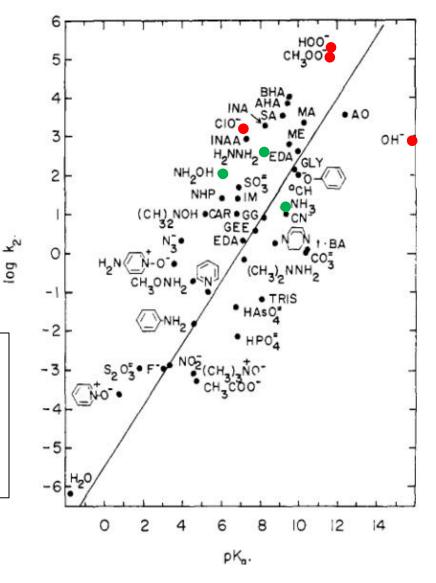
- Introduction
- Early Publications/Hypotheses:
 - Thermodynamic Product Stability
 - Ground State Destabilization
 - Transition State Stabilization
- Solvent Effects
- Gas Phase Experiments
- Conclusions

Introduction

The alpha effect:

- : X : Y :
- Refers to the increased reactivity of a nucleophile due to the presence of an adjacent (α) atom with a lone pair of electrons.
- Frequently referenced with basicity
- Seminal Investigation: Jencks and Carriuolo

 First to attribute enhanced nucleophilicity to the presence of an atom with a lone pair α to the nucleophilic center


HO-O

Jencks et al. JACS, 1960, 82, 675

Jencks and Carriuolo

- Relative rates of substitution
- Attributed the abnormal reactivity to increased polarizability of nucleophiles

The presence of an α-atom with lone pairs leads to greater nucleophilicity than the basicity would suggest

The α -effect

- The term "the α-effect" was first used by Edwards and Pearson.
 - Described it as an additional factor influencing nucleophilicity, separate from polarizability.
 - Their hypothesis:
 - Stabilization of the relative electron deficiency in the transition state via π -bonding (conceptually similar to carbocation stabilization by a neighboring heteroatom)

$$N^m \longrightarrow N^{m+2} + 2e^{-1}$$

• Extent of π -donation is greater in nucleophilic addition products than in the conjugate acid, resulting in enhanced stability of the former

Edwards et al. JACS, 1962, 84, 16

What is the origin of the α -effect?

Hypotheses:

- Increased Polarization of Nucleophiles¹
- Transition State Stabilization by lone pair at α -position²
- Relative stability of products²
- Diminished Solvation of α -nucleophiles³
- Ground State Destabilization due to electron-electron repulsion⁴

¹ Jencks *et* al. JACS, 1960, **82**, 675
² Edwards *et* al. JACS, 1962, **84**, 16
³ C.A. Bunton in "Peroxide Reaction Mechanisms,"
J.O. Edwards, Ed., Intersience Publishers, Inc., New York, N.Y., 1962, p25

⁴ Edwards, JACS, 1962, **84**, 763

Product Stability

- Overlap of α-electrons should lower the transition state energy and increase the pK_a, which would result in no deviation from Brønsted plot
- pK_a may not be the best reference by which to compare nucleophilicity

$$H_{2}O + A \longrightarrow OH + AH K_{A}$$

$$ROH + A \longrightarrow OH + AR K_{A}^{R}$$

$$ROH + AH \longrightarrow H_{2}O + AR K_{HA}^{RA}$$

$$K_{HA}^{RA} = \frac{K_{A}^{R}}{K_{A}}$$
Bruice *et al.* JACS, 1967, **89**, 1967

Hine et al. JACS, 1965, 87, 3387

Product Stability

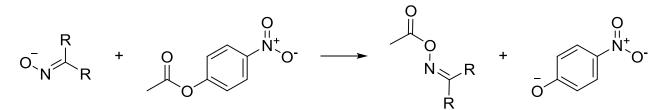

ROH	+	AH		H_2O	+	AR	K_{HA}^{RA}
-----	---	----	--	--------	---	----	---------------

Table IV. Values of $K_{\text{HA}}R^{\text{A}}$, K_{A} , and $K_{\text{A}}R^{\text{A}}$ in Water at 25°^a

R	А	$K_{\rm HA}{}^{\rm RA}$	
Me	OMe	1.1×10^{2}	
Me	OPh	1.4×10	
Me	SH	8×10^{8}	
Me	SMe	2×10^{10}	
Me	SPh	7×10^{9}	
Me	CN	7×10^{15}	
Me	CH ₂ Ac	4×10^{12}	

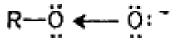
- ► K_A^R or K_{HA}^{RA} could be a better reference for stability
- The factors that stabilize the products of αnucleophilic reactions also stabilize the transition state

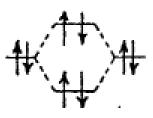
Reactions of Oximes

Rate enhancements in reactions of oximate anions with p-nitro-phenyl acetate in water at 25°

Oxime	pK_{a}	Rate enhancement ^a
H ₂ N Me C=N-OH	12.9	1.2
Et > C = N-OH	12.60	1.0
Me > C = N-OH	12.42	1.0
$\frac{Ph}{Me} > C = N-OH$	11-48	2.7
$\frac{Ac}{Me} C = N - OH$	9.38	100
Ac > C = N-OH	7.38	933

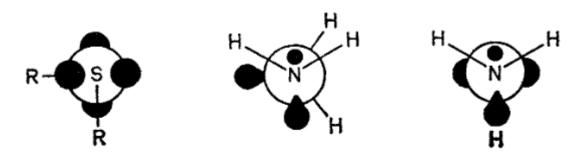
^a Defined as the ratio (bimolecular rate constant for oximate anion/bimolecular rate constant for a phenoxide or alkoxide anion of the same basicity).

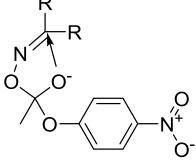

⁷ Hudson *et al.* J. Chem. Soc. D, 1970, 937


A MO Explanation of Increased Nucleophilicity

- > Hudson proposed that overlap of doubly occupied p_{π} orbitals leads to an increase in the HOMO energy
- A reaction of such a nucleophile will have decreased $p_{\pi}-p_{\pi}$ interaction in the transition state

 Some α-nucleophiles might not have the proper orbital symmetry for this interaction




⁷ Hudson *et al.* J. Chem. Soc. D, 1970, 937

"Intramolecular Catalysis"

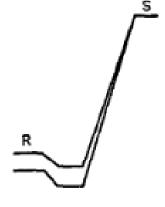
Some molecules have conformers that minimize $p_{\pi}-p_{\pi}$ overlap:

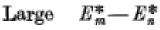
 $\alpha - effect attributed to "intramolecular catalysis" III(c) R-S-S-R III(c) NH_2-OH$ $\theta \cong 90^{\circ} \qquad \theta \cong 90^{\circ} \qquad \theta = 180^{\circ} \text{ (or } 0^{\circ})$

Unanswered Questions

- Why does higher HOMO not result in enhanced proton affinity?
- Why do some α-nucleophiles show enhanced reactivity, while similar α-nucleophiles do not?

Charge vs Frontier Orbitals

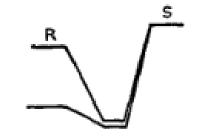

Derived perturbation for all interacting orbitals:


 $\Lambda E =$ $-q_s q_r \Gamma_{rs} + \Sigma_m \Sigma_n (\nu_m - \nu_n + \chi_{mn}) \left[\frac{2(c_r^m c_s^n \beta_{rs})^2 \varepsilon_{mn}}{E_m^* - E_n^*} + c_r^m c_s^n \beta_{rs} (1 - \varepsilon_{mn}) + \frac{\chi_{mn} (EA_m - IP_n)}{4} \right]$ q = charge Γ_{rs} = Coulomb term $\left(\frac{e^2}{\sqrt{R^2 + (\partial_m + \partial_m)^2}}\right)$ v = orbital occupancy X = constant (2 if both v_n and $v_m = 1$, 0 otherwise) $\epsilon_{mn} = 0$ if orbitals are degenerate, 1 otherwise c = orbital coefficients β = resonance integral $Ea_m = Energy lost by removing 1 electron$ $Ip_n = Energy$ gained by adding one electron $E_m^* = Energy$ of electron in orbital m $E_n^* =$ Energy of electron if it was in orbital n

Limiting Cases

$$\Delta E = -q_s q_r \Gamma_{rs} + \Sigma_m \Sigma_n (v_m - v_n + \chi_{mn}) \left[\frac{2(c_r^m c_s^n \beta_{rs})^2 \varepsilon_{mn}}{E_m^* - E_n^*} + c_r^m c_s^n \beta_{rs} (1 - \varepsilon_{mn}) + \frac{\chi_{mn} (EA_m - IP_n)}{4} \right]$$

- If E_m* E_n* is large, the value in the summation is small – charge difference is most important.
 - Also possible if β is small (poor orbital overlap)
- Γ_{rs} is also largest at with smaller radii, corresponding to low polarizability $\Gamma_{rs} = \frac{e^2}{\sqrt{R^2 + (\partial_m + \partial_m)^2}}$

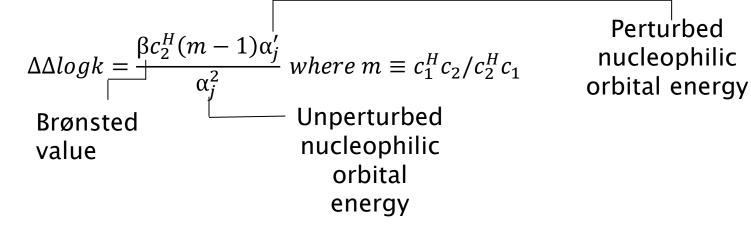


Small Perturbation

Limiting Cases

$$\Delta E = -q_s q_r \Gamma_{rs} + \Sigma_m \Sigma_n (v_m - v_n + \chi_{mn}) \left[\frac{2(c_r^m c_s^n \beta_{rs})^2 \varepsilon_{mn}}{E_m^* - E_n^*} + c_r^m c_s^n \beta_{rs} (1 - \varepsilon_{mn}) + \frac{\chi_{mn} (EA_m - IP_n)}{4} \right]$$

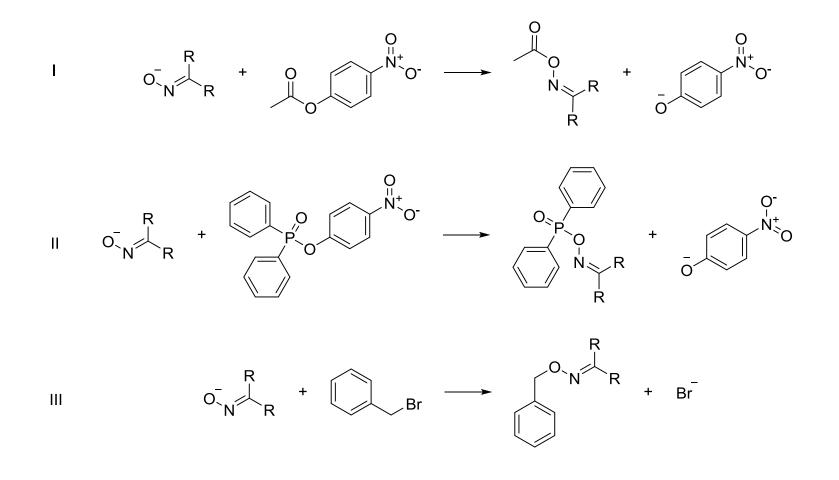
- If E_m^{*} E_n^{*} is small, the value in the summation is large:
 - Corresponds to frontier orbital control



- Small $E_m^* E_n^*$
- Large Perturbation
- Charge term also decreases as radii increases

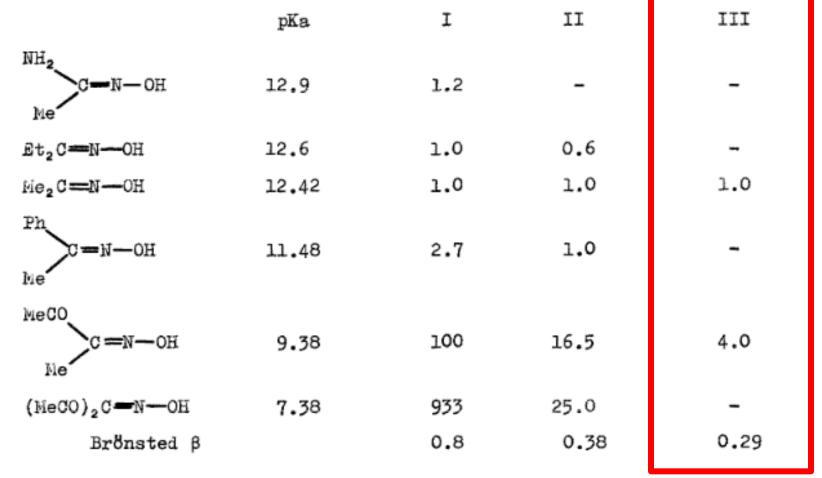
Unanswered Questions

- Why does higher HOMO not result in enhanced proton affinity?
 - Because an interaction with a proton is less dependent on frontier orbital interactions, the perturbation will be smaller in a reaction with a proton
 - Frontier orbitals are changed less. Therefore, we have relieved less of the destabilizing interaction.
- Why do some α-nucleophiles show enhanced reactivity, while similar α-nucleophiles do not?


Hudson's Equation for αnucleophiles

- The magnitude of the α -effect should:
 - Increase as β increases
 - Show a dependence on orbital symmetry
 - Decrease with the magnitude of α_i

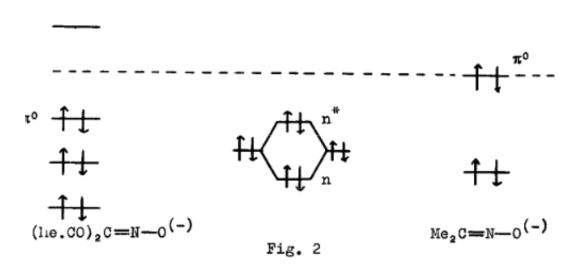
Filippini, F.; Hudson, R. J.C.S. Chem. Comm. 1972, 522


Oximes Revisited

Aubort, J.D.; Hudson, R.F.; Woodcock, R.C. *Tet. Lett.* 1973, **24**, 2229

Oximes Revisited

Cannot be "intramolecular catalysis" as proposed in first publication



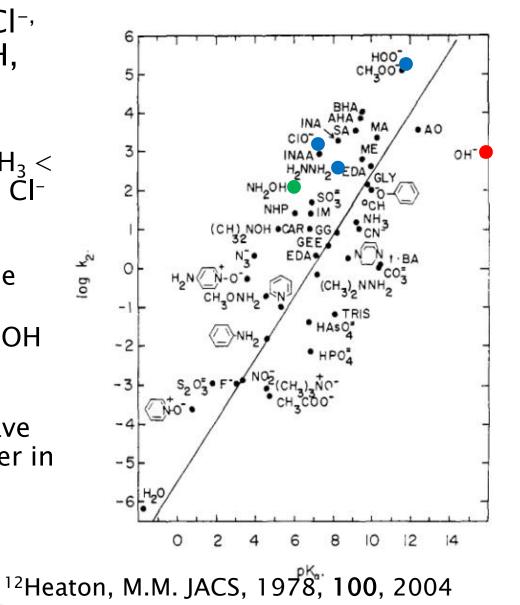
Aubort, J.D.; Hudson, R.F.; Woodcock, R.C. *Tet. Lett.* 1973, **24**, 2229

Oximes Revisited (3)

- Oxygen has two potentially reactive lone pairs:
 - One in conjugation (π -orbital)
 - One interacting with lone-pair on nitrogen (n*)

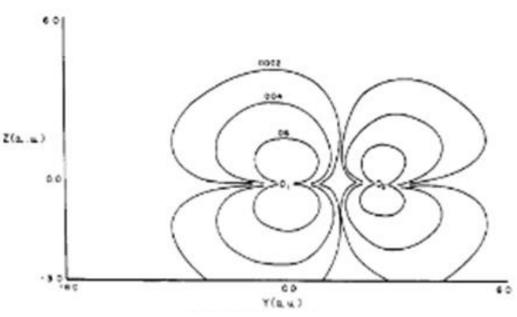
Electron withdrawing substituents lower the energy of the π orbital below n*. When this is the case, an α-effect is observed.

Aubort, J.D.; Hudson, R.F.; Woodcock, R.C. *Tet. Lett.* 1973, **24**, 2229


Polarization Revisited

- Ingold suggested increased reactivity of αnucleophiles could result from an antibonding HOMO, with a node between the nucleophile and α-atom
 - Results in inhomogeneous polarizability, facilitating interaction with electrophile
 - Antibonding interaction is decreased as interaction with an electrophile progresses, hence lowering transition state energy

Ingold, K.C. "Structure and Mechanism in Organic Chemistry", 2nd ed. Cornell University Press, Ithaca, N.Y., 1969, pp 452–453


Electronic Structure Analysis

- Ab initio calculations on Cl^{-,} OH^{-,} NH₃, CH₃NH₂, NH₂OH, NH₂NH₂, ClO⁻, and OOH⁻:
 - HOMO energies: $NH_2OH < NH_3 < NH_2NH_2 < CH_3NH_2 < CIO^- < CI^- < OH^- < OOH^-$
 - OH⁻ and CI⁻ HOMOs are lone pairs
 - HOMOs of CH₃NH₂ and NH₂OH have some antibonding character
 - NH₂NH₂, OOH⁻, and OCI⁻ have strong antibonding character in HOMOs

The case of OOH-

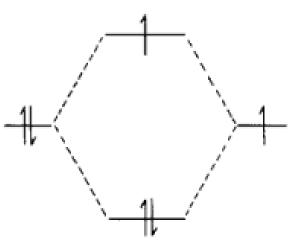
Probability Distribution of OOH-

- Of the anionic nucleophiles, OOH⁻ has the least excess negative charge on the nucleophilic center
- HOMO is an asymmetric antibonding combination of p_z orbitals, with the nucleophilic orbital being more diffuse.

able III. Net Atomic Charges on Nucleophiles-							
он-	CIO-	OOH-	NH3	NH ₂ OH	NH ₂ NH ₂	CH ₃ NH ₂	
O -1.2 H +0.2	O -0.78 Cl -0.22	O ₁ -0.73 O ₂ -0.55 H +0.28	N -0.88 H +0.29	$ \begin{array}{c} N & -0.50 \\ O & -0.53 \\ H_{1,2} + 0.31 \\ H_3 & +0.41 \end{array} $	N -0.59 H _{1,3} +0.27 H _{2,4} +0.31	$ \begin{array}{r} N & -0.70 \\ C & -0.42 \\ H_{1,2} & +0.17 \\ H_3 & +0.21 \\ H_{4,5} & +0.29 \end{array} $	

Table III. Net Atomic Charges on Nucleophiles^a

Analysis of OOH-

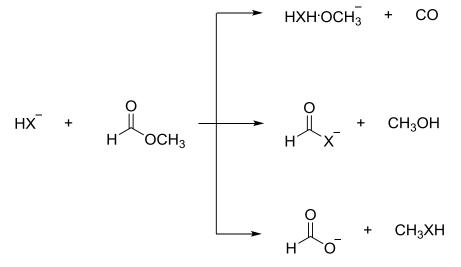

- High HOMO and charge considerations are consistent with Hudson's analysis
 - High HOMO suggests ground-state destabilization
 - Low charge and nucleophilic oxygen suggests the Coulomb term is relatively small for OOH⁻
- Antibonding combination of orbitals supports Ingold's hypothesis on α-nucleophilicity:
 - Diffuse nucleophilic is more easily polarized by approach of electrophile
 - Donation of antibonding electrons to electrophile has a stabilizing effect on the system

Transition State Stabilization

Some nucleophilic reactions involve a partial electron transfer event:¹³

 $\mathrm{N:} + \mathrm{S} \rightarrow [\mathrm{N} \cdot + \mathrm{S} \cdot] \rightarrow \mathrm{N-S}$

 Because of diradical character, α-lone pair stabilizes the transition state:


¹³Hoz, S. J. Org. Chem. 1982, **47**, 3545

Transition State Stabilization

- Extent of stabilization will be proportionate to contribution of diradicaloid character:
 - Substrates with high electron affinity (lower LUMO) are more likely to undergo an ET event
 - Explains observation of smaller α-effects in Sn2 reactions relative to addition to unsaturated compounds
 - $\circ\,$ Large $\beta-values$ associated with ET reactions
 - Dependence of magnitude of α -effect on β agrees with Hudson's work

Intermission

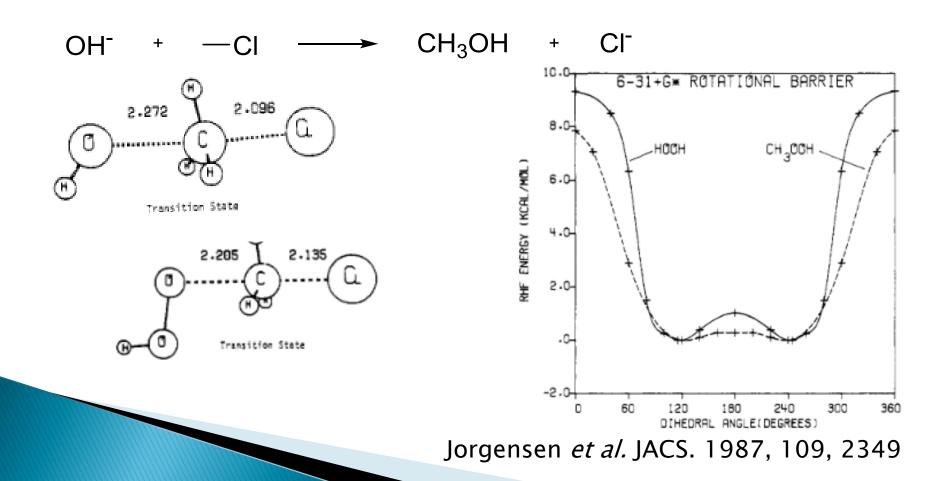
Studying Solvent Effects: Gas Phase Reactions

Table I.	Reaction	Pathways	with	Methyl	Formate ^a
----------	----------	----------	------	--------	----------------------

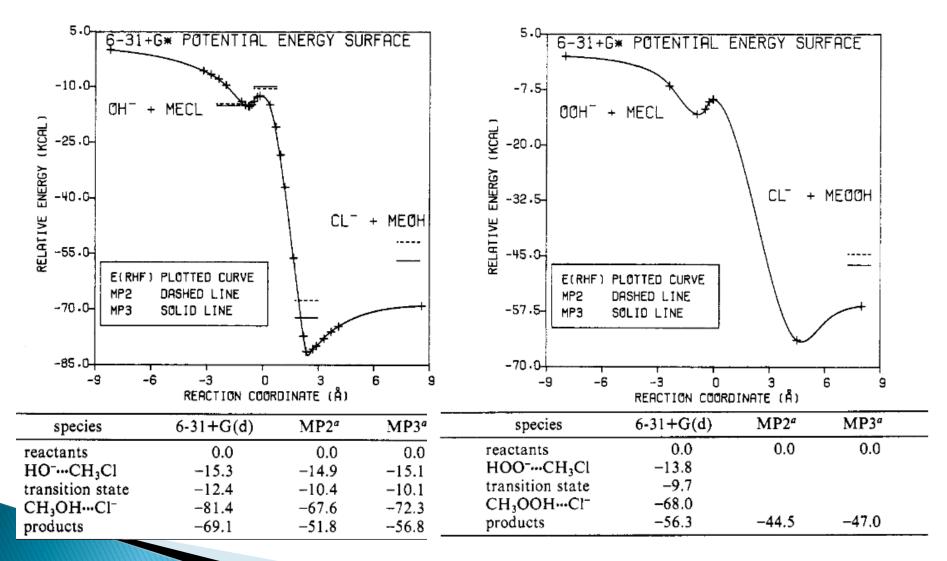
	proton	carbonyl	S _N 2
	abstraction, %	addition, %	displacement, %
H ¹⁸ O ⁻	61	34	5
HOO ⁻	64	28	8

"HOO⁻ shows no enhanced nucleophilic reactivity compared to HO⁻ in the gas phase, and we conclude that the α-effect is most likely a manifestation of solvent effects."

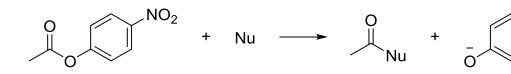
DePuy et al. JACS. 1983, 105, 2481

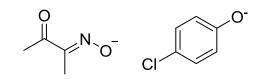

Solvent Effects?

- > The magnitude of the α -effect is dependent on β
- Prior reactions have low selectivity
 - Evident by 20kcal/mol difference in proton affinities
- It is likely that β approaches 0, so we would expect to observe no α -effect
- "Determination of β_{nuc} is essential in order to obtain a meaningful conclusion."

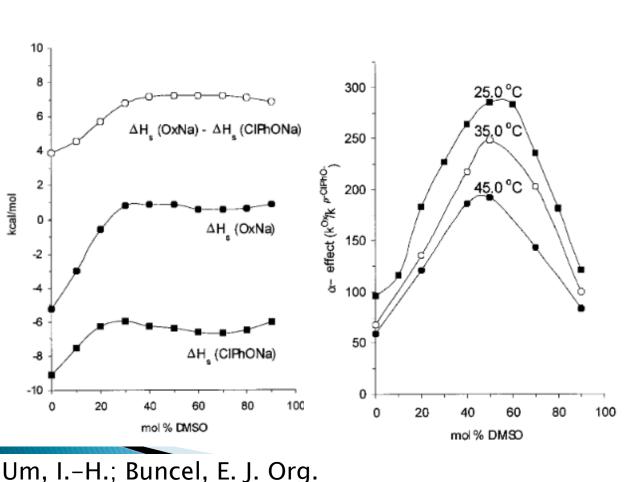

Hoz, S.; Bunce., E. Tet. Lett. 1984, 25, 3411

Solvent Effects: A Theoretical Study


 $HO-O^{-} + -CI \longrightarrow CH_{3}OOH + CI^{-}$



Solvent Effects: A Theoretical Study

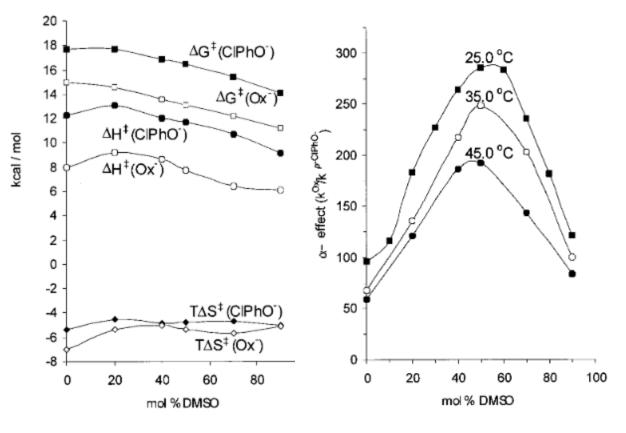


Jorgensen et al. JACS. 1987, 109, 2349

Chem. 2000, 65, 577-582

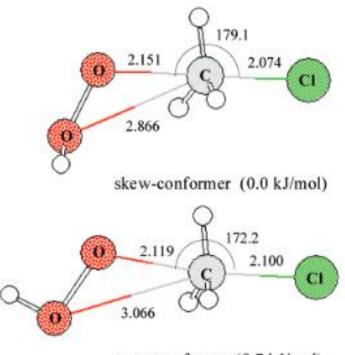
Um and Buncel: Effects of Solvation GS

 NO_2


- Trend in desolvation parallels α-effect up to ~40% DMSO in water.
- Difference in GS desolvation does not explain the changes in the αeffect at higher mol% DMSO

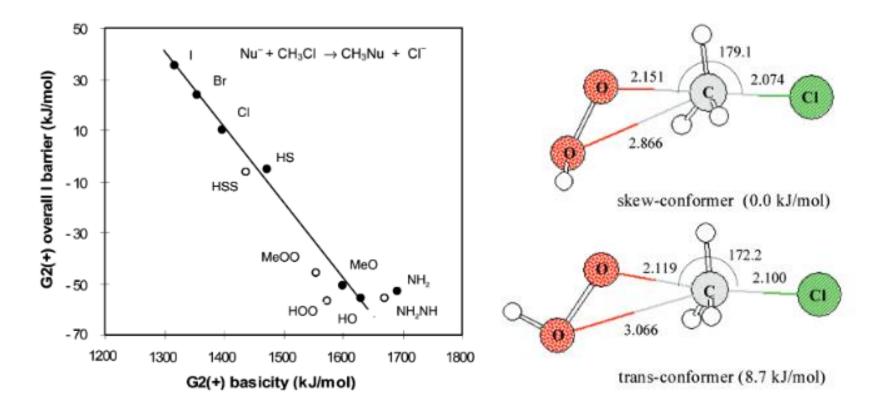
ΔG[‡] (CIPhO⁻) decreases more rapidly than ΔG[‡] (Ox⁻) at high mol% DMSO

TS Stabilization


The extent of asynchronicity in the ΔG^{\dagger} (Ox⁻) transition state is more variable with respect to solvent, where asynchronicity in ΔG^{\dagger} (ClPhO⁻) remains constant

Um, I.–H.; Buncel, E. J. Org. Chem. 2000, 65, 577–582

Gas Phase *α*-effect


- Most evidence pointed to the absence of a solvent effect in the gas phase
- New study found lower energy transition state at higher level of theory

trans-conformer (8.7 kJ/mol)

Jorgensen *et al.* JACS. 1987, 109, 2349 Ren, Y.; Yamataka, H. Org. Lett. 2006, 8, 119–121

Gas Phase *α*-effect

Ren, Y.; Yamataka, H. Org. Lett. 2006, 8, 119–121

Gas Phase S_N2

Nucleophilicity of "normal" nucleophiles correlates well to proton affinity, while α-nucleophiles show negative deviation

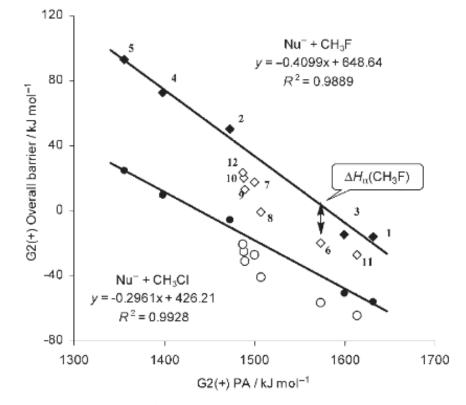
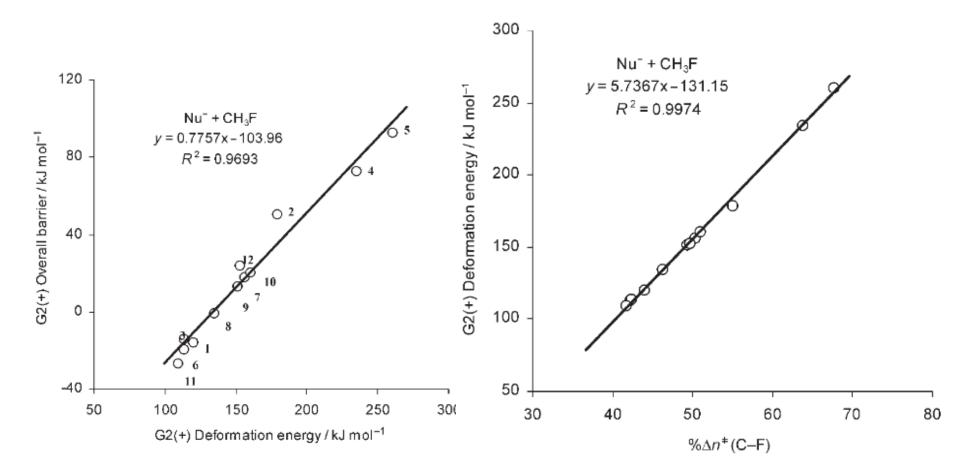
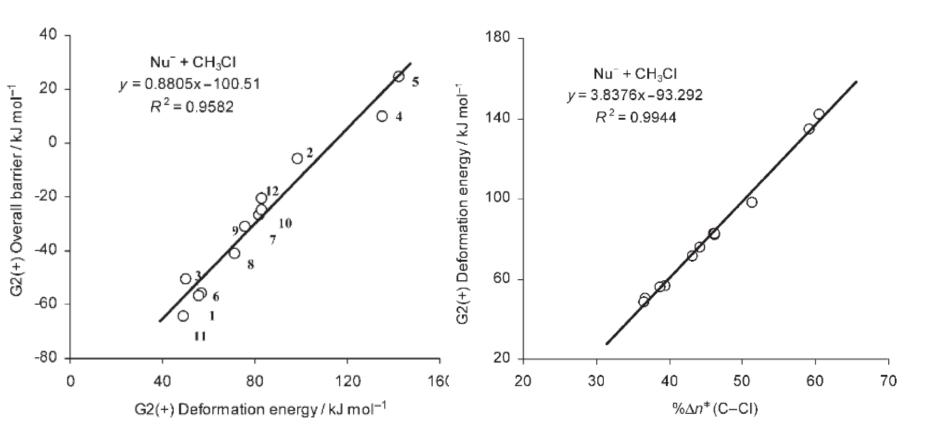


Figure 1. Plot of the G2(+) overall barriers versus the PA's of normal nucleophiles (\bullet and \bullet) and α -nucleophiles (\diamond and $_{\odot}$) for the reactions given in Equations (1) (upper) and (2) (below) at 298.15 K. The numbers in bold represent the nucleophiles: **1**: HO⁻; **2**: HS⁻; **3**: CH₃O⁻; **4**: Cl⁻ **5**: Br⁻; **6**:HOO⁻; **7**:HSO⁻; **8**: FO⁻; **9**: ClO⁻; **10**:BrO⁻; **11**: NH₂O⁻; **12**: HC(=O)OO⁻.

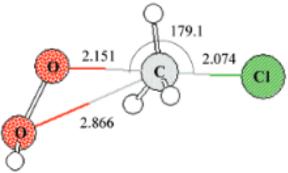

Ren, Y.; Yamataka, H. Chem. Eur. J. 2007, 13, 677

Gas Phase $S_N 2$


	Nu⁻	G2(+) PA	ΔH^{+} (CH ₃ F)	ΔH^{\pm} (CH ₃ Cl)	ΔH (CH ₃ F)	ΔH (CH ₃ Cl)	ΔE_{def} (CH ₃ F)	$\Delta E_{\rm def}$ (CH ₃ Cl)
1	HO ⁻	1631.8	-15.6	-55.5	-77.6	-205.6	119.9	56.9
2	HS ⁻	1473.1	50.4	-5.6	42.7	-85.3	178.7	98.3
3	CH ₃ O ⁻	1599.0	-14.1	-50.6	-66.8	-194.8	113.1	50.1
4	Cl-	1398.4	73.1	9.9	128.0	0.0	234.7	135.0
5	Br-	1355.3	92.9	24.7	162.0	34.0	260.4	142.4
6	HOO-	1573.1	-19.4	-56.6	-53.0	-180.9	113.6	55.7
7	HSO ⁻	1500.2	17.9	-26.7	32.7	-95.3	156.2	81.8
8	FO ⁻	1507.2	-0.7	-40.8	2.5	-125.5	134.6	71.3
9	ClO ⁻	1489.6	13.2	-31.0	35.3	-92.6	151.3	75.5
10	BrO-	1488.0	20.4	-24.9	42.6	-85.4	160.4	82.8
11	NH_2O^-	1614.1	-26.8	-64.2	-83.5	-211.4	109.4	48.8
12	HCOOO-	1486.9	23.7	-20.4	43.0	-84.8	152.8	82.9

Strong correlation between deformation energy and overall barrier indicates that the transition states for αnucleophiles have less C-X bond cleavage in the transition state than expected from their proton affinity

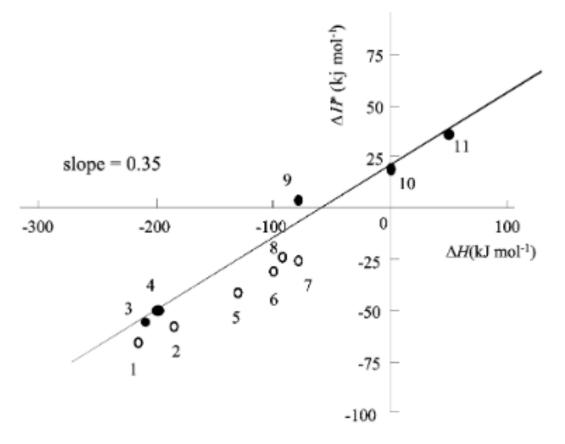
Ren, Y.; Yamataka, H. Chem. Eur. J. 2007, 13, 677


Top: 1: HO⁻; 2: HS⁻; 3: CH₃O⁻; 4: Cl⁻ 5: Br⁻; 6:HOO⁻; 7:HSO⁻; 8: FO⁻; 9: ClO⁻; 10:BrO⁻; 11: NH₂O⁻; 12: HC(=O)OO⁻

Bottom: 1: HO⁻; 2: HS⁻; 3: CH₃O⁻; 4: Cl⁻ 5: Br⁻; 6:HOO⁻; 7:HSO⁻; 8: FO⁻; 9: ClO⁻; 10:BrO⁻; 11: NH₂O⁻; 12: HC(=O)OO⁻.

The magnitude of the α -effect

- More electronegative α-atoms lead to larger α-effects (FO⁻ vs ClO⁻)
- Electron withdrawing groups diminish the alpha effect
- Higher electron density at the α-atom and greater positive charge at the electrophile lead to a greater α-effect


Old and New Hypotheses

- Thermodynamic Product Stability
- Transition State Stability
 - TS tightness
 - Polarizability
 - Deformation Energy

²⁰Ren, Y.; Yamataka, H. J. Org. Chem. 2007, 72, 5660

Thermodynamic Product Stability

- α-nucleophiles have negative deviation ΔH[‡] vs ΔH_{rxn} plot
- Thermodynamic stability does not explain gas-phase αeffects

FIGURE 3. Plots of the G2(+) overall activation energy vs reaction energy for the reaction of EtCl. Filled circles for normal nucleophiles (3, HO⁻: 4, CH₃O⁻: 9, HS⁻: 10, Cl⁻: 11, Br⁻) and open circles for α -nucleophiles (1, NH₂O⁻: 2, HOO⁻: 5, FO⁻: 6, ClO⁻: 7, HSO⁻: 8, BrO⁻).

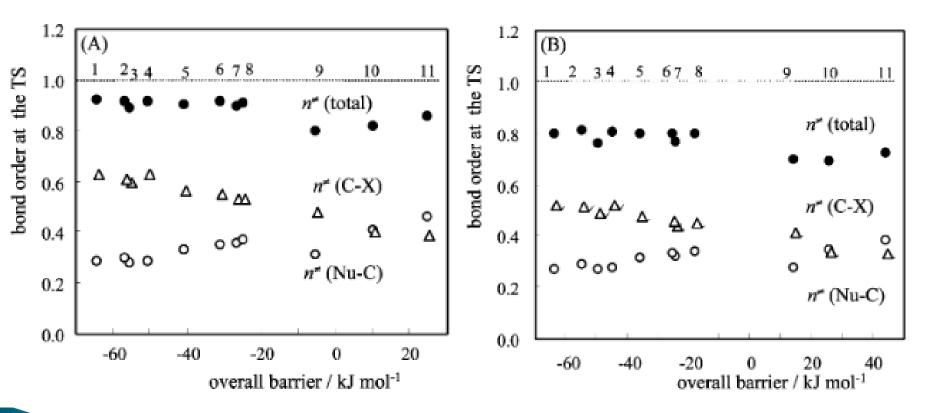

Transition State Tightness

TABLE 1. Bond Lengths and Bond Orders of the Nu-C and C-Cl Bonds at the S_N2 TS Structures, $[Nu-Et-Cl]^{-+}$ (Nu = HO, HS, CH₃O, Cl, Br, HOO, HSO, FO, ClO, BrO, and NH₂O)^{*a*}

Nu^-	r _{Nu-C}	rc-ci	n^{\dagger} Nu-C	n^{\pm} C-Cl	$n^*_{Nu-C} + n^*_{C-Cl}$	$D_{\rm Y-O-Ca-C} \beta^b$
HO-	2.201	2.155	0.279	0.547	0.826	
HS^{-}	2.540	2.264	0.304	0.456	0.760	
CH_3O^-	2.184	2.119	0.283	0.581	0.864	
$C1^{-}$	2.354	2.381	0.393	0.375	0.768	
Br^{-}	2.456	2.404	0.440	0.361	0.802	
HOO^{-}	2.163	2.115	0.296	0.585	0.881	173.8
HSO^{-}	2.091	2.196	0.342	0.511	0.853	162.6
FO^{-}	2.099	2.163	0.328	0.540	0.868	180.0
C10-	2.082	2.191	0.347	0.515	0.862	180.0
BrO ⁻	2.063	2.209	0.357	0.500	0.857	180.0
NH_2O^-	2.191	2.101	0.284	0.598	0.883	180.0

 $1-n^{+}_{C-CI} > n^{+}_{Nuc-C}$ in all cases: denotes bond breaking is ahead of bond forming in TS

 Later Transition States have larger energy barriers
 There is no difference between α-nucleophiles and "normal" nucleophiles. Therefore, transition state tightness cannot predict magnitude of α-effect

FIGURE 4. Variations of TS bond order with overall reaction barrier for (A) MeF and (B) *i*-PrCl. 1, NH₂O⁻: 2, HOO⁻: 3, HO⁻: 4, MeO⁻: 5, FO⁻: 6, ClO⁻: 7, HSO⁻: 8, BrO⁻: 9, HS⁻: 10, Cl⁻: 11, Br⁻.

Polarizability and Deformation Energy

- Polarizability:
 - Hard α -atoms result in a larger α -effect
 - No immediate conclusion
- Deformation Energy:
 - α-nucleophiles have enhanced rates because of their smaller deformation energy

Is it possible that harder α -atoms perturb the nucleophilic orbital more than soft α -atoms?

Experimental Evidence: Gas Phase $S_N 2$ Reactions

	thermodynamic data ^a		kinetic data ^b	branching fraction (Eff) ^c			α-effect
reaction $(X^- + M)$	PA (X ⁻)	$\Delta H_{\rm rm}$	$k_{\rm expt}~(imes 10^{-10})$	S _N 2	РТ	assoc	$\mathrm{Eff}_{\mathrm{HOO}^{-}}/\mathrm{Eff}_{\mathrm{X}^{-}}$
$HO^- + CH_3F$	1633	-91	0.120 ± 0.021	100 (0.0042)	_	_	0.62
$CH_3O^- + CH_3F$	1598 ± 2	-70	0.017 ± 0.001	100 (0.0007)	_	_	3.7
$C_2H_5O^- + CH_3F$	1585 ± 3	-60	<0.001	< 0.00005	_	_	>50
$HOO^- + CH_3F$	1575 ± 4	-65	0.060 ± 0.002	100 (0.0026)	_	_	
HO ⁻ + CH ₃ OC ₆ H ₅	1633	-162	13.1 ± 0.2	28 (0.13)	51	20	0.69
CH ₃ O ⁻ + CH ₃ OC ₆ H ₅	1598 ± 2	-141	2.74 ± 0.01	32 (0.04)	_	68	2.3
$C_2H_5O^- + CH_3OC_6H_5$	1585 ± 3	-131	1.38 ± 0.10	10 (0.01)	_	90	9.0
HOO ⁻ + CH ₃ OC ₆ H ₅	1575 ± 4	-135	3.49 ± 0.05	54 (0.09)	_	46	
i-C ₃ H ₇ O ⁻ + CH ₃ OC ₆ H ₅	1576 ± 3	-121	_	_	_	100	
HO [−] + CH ₃ OC ₆ H ₄ F	1633	-174	23.0 ± 0.6	_	100	_	
CH ₃ O ⁻ + CH ₃ OC ₆ H ₄ F	1598 ± 2	-153	10.7 ± 0.4	32 (0.10)	10	58	2.3
$C_2H_5O^- + CH_3OC_6H_4F$	1585 ± 3	-143	6.88 ± 0.21	9 (0.02)	_	91	12
$HOO^- + CH_3OC_6H_4F$	1575 ± 4	-147	10.4 ± 0.5	70 (0.23)	_	30	
$i-C_3H_7O^- + CH_3OC_6H_4F$	1576 ± 3	-133	_	_	_	100	

Bierbaum, et al. JACS 2011, 113, 13897

Experimental Evidence

Relative rate enhancement of peroxide relative to nucleophiles with greater proton affinities provides evidence for an α effect in the gas phase.

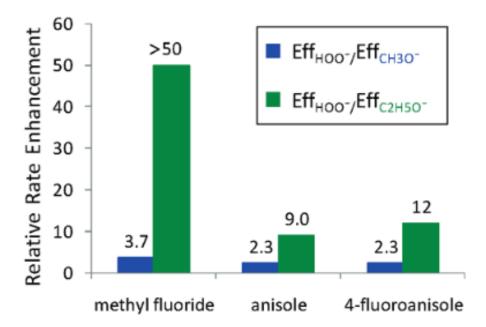


Figure 1. Magnitude of the α -effect for HOO⁻ (PA = 1575 kJ mol⁻¹) relative to CH₃O⁻ (PA = 1598 kJ mol⁻¹) and C₂H₅O⁻ (PA = 1585 kJ mol⁻¹).

Conclusions

- Although the α-effect is heavily modulated by solvent, theoretical and experimental results that the α-effect is an intrinsic property and α-nucleophiles.
- The physical origin of the α-effect is related to similarities in the electronic structure of the products and the transition state. However, the precise origin of these similarities is still inconclusive.

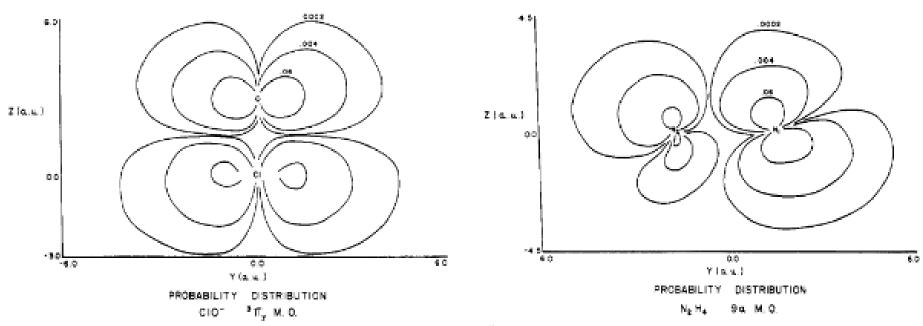
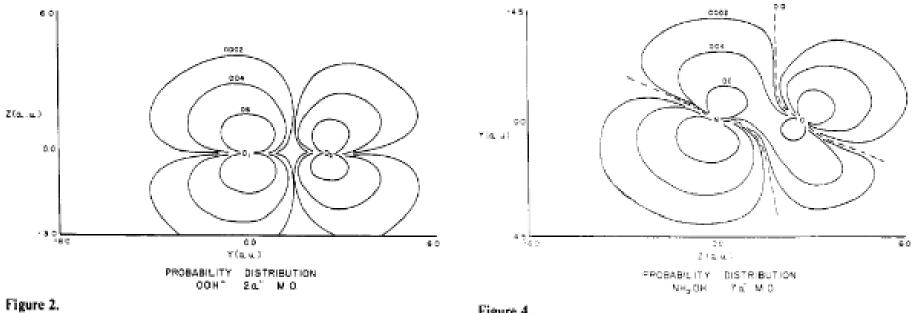



Figure 1.

Figure 3.

